Papers
Topics
Authors
Recent
Search
2000 character limit reached

PostRainBench: A comprehensive benchmark and a new model for precipitation forecasting

Published 4 Oct 2023 in cs.LG and cs.CV | (2310.02676v3)

Abstract: Accurate precipitation forecasting is a vital challenge of societal importance. Though data-driven approaches have emerged as a widely used solution, solely relying on data-driven approaches has limitations in modeling the underlying physics, making accurate predictions difficult. We focus on the Numerical Weather Prediction (NWP) post-processing based precipitation forecasting task to couple Machine Learning techniques with traditional NWP. This task remains challenging due to the imbalanced precipitation data and complex relationships between multiple meteorological variables. To address these limitations, we introduce the \textbf{PostRainBench}, a comprehensive multi-variable NWP post-processing benchmark, and \textbf{CAMT}, a simple yet effective Channel Attention Enhanced Multi-task Learning framework with a specially designed weighted loss function. Extensive experimental results on the proposed benchmark show that our method outperforms state-of-the-art methods by 6.3\%, 4.7\%, and 26.8\% in rain CSI and improvements of 15.6\%, 17.4\%, and 31.8\% over NWP predictions in heavy rain CSI on respective datasets. Most notably, our model is the first deep learning-based method to outperform NWP approaches in heavy rain conditions. These results highlight the potential impact of our model in reducing the severe consequences of extreme rainfall events. Our datasets and code are available at https://github.com/yyyujintang/PostRainBench.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.