Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Label Residual Weighted Learning for Individualized Combination Treatment Rule (2310.00864v3)

Published 2 Oct 2023 in stat.ME

Abstract: Individualized treatment rules (ITRs) have been widely applied in many fields such as precision medicine and personalized marketing. Beyond the extensive studies on ITR for binary or multiple treatments, there is considerable interest in applying combination treatments. This paper introduces a novel ITR estimation method for combination treatments incorporating interaction effects among treatments. Specifically, we propose the generalized $\psi$-loss as a non-convex surrogate in the residual weighted learning framework, offering desirable statistical and computational properties. Statistically, the minimizer of the proposed surrogate loss is Fisher-consistent with the optimal decision rules, incorporating interaction effects at any intensity level - a significant improvement over existing methods. Computationally, the proposed method applies the difference-of-convex algorithm for efficient computation. Through simulation studies and real-world data applications, we demonstrate the superior performance of the proposed method in recommending combination treatments.

Citations (1)

Summary

We haven't generated a summary for this paper yet.