Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
94 tokens/sec
Gemini 2.5 Pro Premium
55 tokens/sec
GPT-5 Medium
38 tokens/sec
GPT-5 High Premium
24 tokens/sec
GPT-4o
106 tokens/sec
DeepSeek R1 via Azure Premium
98 tokens/sec
GPT OSS 120B via Groq Premium
518 tokens/sec
Kimi K2 via Groq Premium
188 tokens/sec
2000 character limit reached

Drug Discovery with Dynamic Goal-aware Fragments (2310.00841v3)

Published 2 Oct 2023 in cs.LG

Abstract: Fragment-based drug discovery is an effective strategy for discovering drug candidates in the vast chemical space, and has been widely employed in molecular generative models. However, many existing fragment extraction methods in such models do not take the target chemical properties into account or rely on heuristic rules. Additionally, the existing fragment-based generative models cannot update the fragment vocabulary with goal-aware fragments newly discovered during the generation. To this end, we propose a molecular generative framework for drug discovery, named Goal-aware fragment Extraction, Assembly, and Modification (GEAM). GEAM consists of three modules, each responsible for goal-aware fragment extraction, fragment assembly, and fragment modification. The fragment extraction module identifies important fragments contributing to the desired target properties with the information bottleneck principle, thereby constructing an effective goal-aware fragment vocabulary. Moreover, GEAM can explore beyond the initial vocabulary with the fragment modification module, and the exploration is further enhanced through the dynamic goal-aware vocabulary update. We experimentally demonstrate that GEAM effectively discovers drug candidates through the generative cycle of the three modules in various drug discovery tasks. Our code is available at https://github.com/SeulLee05/GEAM.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube