Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CrossDF: Improving Cross-Domain Deepfake Detection with Deep Information Decomposition (2310.00359v3)

Published 30 Sep 2023 in cs.CV

Abstract: Deepfake technology poses a significant threat to security and social trust. Although existing detection methods have shown high performance in identifying forgeries within datasets that use the same deepfake techniques for both training and testing, they suffer from sharp performance degradation when faced with cross-dataset scenarios where unseen deepfake techniques are tested. To address this challenge, we propose a Deep Information Decomposition (DID) framework to enhance the performance of Cross-dataset Deepfake Detection (CrossDF). Unlike most existing deepfake detection methods, our framework prioritizes high-level semantic features over specific visual artifacts. Specifically, it adaptively decomposes facial features into deepfake-related and irrelevant information, only using the intrinsic deepfake-related information for real/fake discrimination. Moreover, it optimizes these two kinds of information to be independent with a de-correlation learning module, thereby enhancing the model's robustness against various irrelevant information changes and generalization ability to unseen forgery methods. Our extensive experimental evaluation and comparison with existing state-of-the-art detection methods validate the effectiveness and superiority of the DID framework on cross-dataset deepfake detection.

Citations (4)

Summary

We haven't generated a summary for this paper yet.