Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ecoBLE: A Low-Computation Energy Consumption Prediction Framework for Bluetooth Low Energy (2309.16686v1)

Published 2 Aug 2023 in cs.NI and cs.LG

Abstract: Bluetooth Low Energy (BLE) is a de-facto technology for Internet of Things (IoT) applications, promising very low energy consumption. However, this low energy consumption accounts only for the radio part, and it overlooks the energy consumption of other hardware and software components. Monitoring and predicting the energy consumption of IoT nodes after deployment can substantially aid in ensuring low energy consumption, calculating the remaining battery lifetime, predicting needed energy for energy-harvesting nodes, and detecting anomalies. In this paper, we introduce a Long Short-Term Memory Projection (LSTMP)-based BLE energy consumption prediction framework together with a dataset for a healthcare application scenario where BLE is widely adopted. Unlike radio-focused theoretical energy models, our framework provides a comprehensive energy consumption prediction, considering all components of the IoT node, including the radio, sensor as well as microcontroller unit (MCU). Our measurement-based results show that the proposed framework predicts the energy consumption of different BLE nodes with a Mean Absolute Percentage Error (MAPE) of up to 12%, giving comparable accuracy to state-of-the-art energy consumption prediction with a five times smaller prediction model size.

Summary

We haven't generated a summary for this paper yet.