Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Statistically self-similar mixing by Gaussian random fields (2309.15744v1)

Published 27 Sep 2023 in math.PR, math-ph, math.AP, math.DS, and math.MP

Abstract: We study the passive transport of a scalar field by a spatially smooth but white-in-time incompressible Gaussian random velocity field on $\mathbb{R}d$. If the velocity field $u$ is homogeneous, isotropic, and statistically self-similar, we derive an exact formula which captures non-diffusive mixing. For zero diffusivity, the formula takes the shape of $\mathbb{E}\ | \theta_t |{\dot{H}{-s}}2 = \mathrm{e}{-\lambda{d,s} t} | \theta_0 |{\dot{H}{-s}}2$ with any $s\in (0,d/2)$ and $\frac{\lambda{d,s}}{D_1}:= s(\frac{\lambda_{1}}{D_1}-2s)$ where $\lambda_1/D_1 = d$ is the top Lyapunov exponent associated to the random Lagrangian flow generated by $u$ and $ D_1$ is small-scale shear rate of the velocity. Moreover, the mixing is shown to hold $\textit{uniformly}$ in diffusivity.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.