A Turbulent Fluid Mechanics via Nonlinear 'Mixing' of Smooth Velocity Flows With Weighted Random Fields: Stochastically Averaged Navier-Stokes Equations and Velocity Correlations (2211.14925v2)
Abstract: Let $\mathfrak{D}\subset\mathbb{R}{3}$, with ${Vol}(\mathfrak{D})\sim L{3}$, contain an incompressible fluid of viscosity $\nu$ and velocity $\mathrm{U}{i}(x,t)$ with $(x,t)\in\mathfrak{D}\times[0,\infty)$, satisfying the Navier-Stokes equations with some boundary conditions on $\partial\mathfrak{D}$ and evolving from initial Cauchy data. Now let $\mathscr{B}(x)$ be a Gaussian random field defined for all $x\in\mathfrak{D}$ with expectation $\mathbb{I!E}\langle\mathscr{B}(x)\rangle=0$, and a Bargmann-Fock binary correlation $\mathbb{I!E}\big\langle\mathscr{B}(x)\otimes \mathscr{B}({y})\big\rangle=\mathsf{C}\exp(-|{x}-{y}|{2}\lambda{-2})$ with $\lambda\le {L}$. Define a volume-averaged Reynolds number $\mathbf{Re}(\mathfrak{D},t) =(|Vol(\mathfrak{D})|{-1}\int{\mathfrak{D}}|\mathrm{U}{i}(x,t)|d\mu({x}){L}/\nu$. The critical Reynolds number is $\mathbf{Re}{c}(\mathfrak{D})$ so that turbulence fully evolves within $\mathfrak{D}$ for $t$ such that $\mathbf{Re}(\mathfrak{D},t)>\mathbf{Re}{c}(\mathfrak{D})$. Let $\psi(|\mathbf{Re}(\mathfrak{D},t)-\mathbf{Re}{c}(\mathfrak{D})|)$ be an arbitrary monotone-increasing weighting functional. The turbulent flow evolving within $\mathfrak{D}$ is described by the random field $\mathscr{U}{i}(x,t)$ via a 'mixing' ansatz $\mathscr{U}{i}(x,t)=\mathrm{U}{i}(x,t)+\beta\mathrm{U}{i}(x,t) \big\lbrace\psi(|\mathbf{Re}(\mathfrak{D},t)-\mathbf{Re}{c}(\mathfrak{D})|)\big\rbrace \mathbb{I}{\mathcal{S}}[\mathbf{Re}(\mathfrak{D},t)\big]\mathscr{B}(x)$ where ${\beta}\ge 1$ is a constant and $\mathbb{I}{\mathcal{S}}[\mathbf{Re}(\mathfrak{D},t)]$ an indicator function. The flow grows increasingly random if $\mathbf{Re}(\mathfrak{D},t)$ increases with $t$ so that this is a 'control parameter'. The turbulent flow $\mathscr{U}{i}(x,t)$ is a solution of stochastically averaged N-S equations. Reynolds-type velocity correlations are estimated.