Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Tactile Estimation of Extrinsic Contact Patch for Stable Placement (2309.14552v2)

Published 25 Sep 2023 in cs.RO, cs.AI, and cs.LG

Abstract: Precise perception of contact interactions is essential for fine-grained manipulation skills for robots. In this paper, we present the design of feedback skills for robots that must learn to stack complex-shaped objects on top of each other (see Fig.1). To design such a system, a robot should be able to reason about the stability of placement from very gentle contact interactions. Our results demonstrate that it is possible to infer the stability of object placement based on tactile readings during contact formation between the object and its environment. In particular, we estimate the contact patch between a grasped object and its environment using force and tactile observations to estimate the stability of the object during a contact formation. The contact patch could be used to estimate the stability of the object upon release of the grasp. The proposed method is demonstrated in various pairs of objects that are used in a very popular board game.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (16)
  1. M. Riedmiller, R. Hafner, T. Lampe, M. Neunert, J. Degrave, T. van de Wiele, V. Mnih, N. Heess, and J. T. Springenberg, “Learning by playing solving sparse reward tasks from scratch,” in Proceedings of the 5th Conference on Robot Learning (CoRL), ser. Proceedings of Machine Learning Research, J. Dy and A. Krause, Eds., vol. 80.   PMLR, 10–15 Jul 2018, pp. 4344–4353. [Online]. Available: https://proceedings.mlr.press/v80/riedmiller18a.html
  2. Y. Zhu, Z. Wang, J. Merel, A. Rusu, T. Erez, S. Cabi, S. Tunyasuvunakool, J. Kramár, R. Hadsell, N. de Freitas, and N. Heess, “Reinforcement and imitation learning for diverse visuomotor skills,” in Proceedings of International Conference on Learning Representations (ICLR), 2018.
  3. S. Cabi, S. G. Colmenarejo, A. Novikov, K. Konyushkova, S. Reed, R. Jeong, K. Zolna, Y. Aytar, D. Budden, M. Vecerik, O. Sushkov, D. Barker, J. Scholz, M. Denil, N. de Freitas, and Z. Wang, “Scaling data-driven robotics with reward sketching and batch reinforcement learning,” 2020.
  4. L. Hermann, M. Argus, A. Eitel, A. Amiranashvili, W. Burgard, and T. Brox, “Adaptive curriculum generation from demonstrations for sim-to-real visuomotor control,” in 2020 IEEE International Conference on Robotics and Automation (ICRA), 2020, pp. 6498–6505.
  5. R. Jeong, Y. Aytar, D. Khosid, Y. Zhou, J. Kay, T. Lampe, K. Bousmalis, and F. Nori, “Self-supervised sim-to-real adaptation for visual robotic manipulation,” in Proceedings of IEEE International Conference on Robotics and Automation (ICRA), 2020, pp. 2718–2724.
  6. M. D. Noseworthy, C. Moses, I. Brand, S. Castro, L. P. Kaelbling, T. Lozano-Pérez, and N. Roy, “Active learning of abstract plan feasibility,” Robotics Science and System (RSS).
  7. A. X. Lee, C. M. Devin, Y. Zhou, T. Lampe, K. Bousmalis, J. T. Springenberg, A. Byravan, A. Abdolmaleki, N. Gileadi, D. Khosid, C. Fantacci, J. E. Chen, A. Raju, R. Jeong, M. Neunert, A. Laurens, S. Saliceti, F. Casarini, M. Riedmiller, r. hadsell, and F. Nori, “Beyond pick-and-place: Tackling robotic stacking of diverse shapes,” in Proceedings of the 5th Conference on Robot Learning (CoRL), ser. Proceedings of Machine Learning Research, A. Faust, D. Hsu, and G. Neumann, Eds., vol. 164.   PMLR, 08–11 Nov 2022, pp. 1089–1131. [Online]. Available: https://proceedings.mlr.press/v164/lee22b.html
  8. F. Furrer, M. Wermelinger, H. Yoshida, F. Gramazio, M. Kohler, R. Siegwart, and M. Hutter, “Autonomous robotic stone stacking with online next best object target pose planning,” in Proceedings of IEEE International Conference on Robotics and Automation (ICRA), 2017, pp. 2350–2356.
  9. Y. Liu, J. Choi, and N. Napp, “Planning for robotic dry stacking with irregular stones,” in Field and Service Robotics, G. Ishigami and K. Yoshida, Eds.   Singapore: Springer Singapore, 2021, pp. 321–335.
  10. O. Kroemer, S. Leischnig, S. Luettgen, and J. Peters, “A kernel-based approach to learning contact distributions for robot manipulation tasks,” Autonomous Robots, vol. 42, pp. 581–600, 2018.
  11. L. Manuelli and R. Tedrake, “Localizing external contact using proprioceptive sensors: The contact particle filter,” in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2016, pp. 5062–5069.
  12. S. Kim, D. K. Jha, D. Romeres, P. Patre, and A. Rodriguez, “Simultaneous tactile estimation and control of extrinsic contact,” arXiv preprint arXiv:2303.03385, 2023.
  13. D. Ma, S. Dong, and A. Rodriguez, “Extrinsic contact sensing with relative-motion tracking from distributed tactile measurements,” in Proceedings of IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2021, pp. 11 262–11 268.
  14. S. Kim and A. Rodriguez, “Active extrinsic contact sensing: Application to general peg-in-hole insertion,” in Proceedings of IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2022, pp. 10 241–10 247.
  15. C. Higuera, S. Dong, B. Boots, and M. Mukadam, “Neural contact fields: Tracking extrinsic contact with tactile sensing,” in Proceedings of IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2023, pp. 12 576–12 582.
  16. K. Ota, D. K. Jha, H.-Y. Tung, and J. B. Tenenbaum, “Tactile-filter: Interactive tactile perception for part mating,” Robotics Science and System (RSS), 2023.
Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 tweets and received 55 likes.

Upgrade to Pro to view all of the tweets about this paper: