Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Autopet Challenge 2023: nnUNet-based whole-body 3D PET-CT Tumour Segmentation (2309.13675v2)

Published 24 Sep 2023 in eess.IV

Abstract: Fluorodeoxyglucose Positron Emission Tomography (FDG-PET) combined with Computed Tomography (CT) scans are critical in oncology to the identification of solid tumours and the monitoring of their progression. However, precise and consistent lesion segmentation remains challenging, as manual segmentation is time-consuming and subject to intra- and inter-observer variability. Despite their promise, automated segmentation methods often struggle with false positive segmentation of regions of healthy metabolic activity, particularly when presented with such a complex range of tumours across the whole body. In this paper, we explore the application of the nnUNet to tumour segmentation of whole-body PET-CT scans and conduct different experiments on optimal training and post-processing strategies. Our best model obtains a Dice score of 69\% and a false negative and false positive volume of 6.27 and 5.78 mL respectively, on our internal test set. This model is submitted as part of the autoPET 2023 challenge. Our code is available at: https://github.com/anissa218/autopet\_nnunet

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Anissa Alloula (3 papers)
  2. Daniel R McGowan (2 papers)
  3. Bartłomiej W. Papież (12 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.