Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

M3Dsynth: A dataset of medical 3D images with AI-generated local manipulations (2309.07973v2)

Published 14 Sep 2023 in eess.IV and cs.CV

Abstract: The ability to detect manipulated visual content is becoming increasingly important in many application fields, given the rapid advances in image synthesis methods. Of particular concern is the possibility of modifying the content of medical images, altering the resulting diagnoses. Despite its relevance, this issue has received limited attention from the research community. One reason is the lack of large and curated datasets to use for development and benchmarking purposes. Here, we investigate this issue and propose M3Dsynth, a large dataset of manipulated Computed Tomography (CT) lung images. We create manipulated images by injecting or removing lung cancer nodules in real CT scans, using three different methods based on Generative Adversarial Networks (GAN) or Diffusion Models (DM), for a total of 8,577 manipulated samples. Experiments show that these images easily fool automated diagnostic tools. We also tested several state-of-the-art forensic detectors and demonstrated that, once trained on the proposed dataset, they are able to accurately detect and localize manipulated synthetic content, even when training and test sets are not aligned, showing good generalization ability. Dataset and code are publicly available at https://grip-unina.github.io/M3Dsynth/.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub