Papers
Topics
Authors
Recent
Search
2000 character limit reached

Infinite free resolutions over numerical semigroup algebras via specialization

Published 2 May 2024 in math.AC | (2405.01700v1)

Abstract: Each numerical semigroup $S$ with smallest positive element $m$ corresponds to an integer point in a polyhedral cone $C_m$, known as the Kunz cone. The faces of $C_m$ form a stratification of numerical semigroups that has been shown to respect a number of algebraic properties of $S$, including the combinatorial structure of the minimal free resolution of the defining toric ideal $I_S$. In this work, we prove that the structure of the infinite free resolution of the ground field $\Bbbk$ over the semigroup algebra $\Bbbk[S]$ also respects this stratification, yielding a new combinatorial approach to classifying homological properties like Golodness and rationality of the poincare series in this setting. Additionally, we give a complete classification of such resolutions in the special case $m = 4$, and demonstrate that the associated graded algebras do not generally respect the same stratification.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.