Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Many Cores, Many Models: GPU Programming Model vs. Vendor Compatibility Overview (2309.05445v3)

Published 11 Sep 2023 in cs.DC and cs.PL

Abstract: In recent history, GPUs became a key driver of compute performance in HPC. With the installation of the Frontier supercomputer, they became the enablers of the Exascale era; further largest-scale installations are in progress (Aurora, El Capitan, JUPITER). But the early-day dominance by NVIDIA and their CUDA programming model has changed: The current HPC GPU landscape features three vendors (AMD, Intel, NVIDIA), each with native and derived programming models. The choices are ample, but not all models are supported on all platforms, especially if support for Fortran is needed; in addition, some restrictions might apply. It is hard for scientific programmers to navigate this abundance of choices and limits. This paper gives a guide by matching the GPU platforms with supported programming models, presented in a concise table and further elaborated in detailed comments. An assessment is made regarding the level of support of a model on a platform.

Citations (7)

Summary

We haven't generated a summary for this paper yet.