Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A quantum Monte Carlo algorithm for Bose-Hubbard models on arbitrary graphs (2309.05166v2)

Published 10 Sep 2023 in cond-mat.stat-mech and quant-ph

Abstract: We propose a quantum Monte Carlo algorithm capable of simulating the Bose-Hubbard model on arbitrary graphs, obviating the need for devising lattice-specific updates for different input graphs. We show that with our method, which is based on the recently introduced Permutation Matrix Representation Quantum Monte Carlo [Gupta, Albash and Hen, J. Stat. Mech. (2020) 073105], the problem of adapting the simulation to a given geometry amounts to generating a cycle basis for the graph on which the model is defined, a procedure that can be carried out efficiently and and in an automated manner. To showcase the versatility of our approach, we provide simulation results for Bose-Hubbard models defined on two-dimensional lattices as well as on a number of random graphs.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.