Low-rank Matrix Sensing With Dithered One-Bit Quantization
Abstract: We explore the impact of coarse quantization on low-rank matrix sensing in the extreme scenario of dithered one-bit sampling, where the high-resolution measurements are compared with random time-varying threshold levels. To recover the low-rank matrix of interest from the highly-quantized collected data, we offer an enhanced randomized Kaczmarz algorithm that efficiently solves the emerging highly-overdetermined feasibility problem. Additionally, we provide theoretical guarantees in terms of the convergence and sample size requirements. Our numerical results demonstrate the effectiveness of the proposed methodology.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.