Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fitness Approximation through Machine Learning (2309.03318v2)

Published 6 Sep 2023 in cs.NE, cs.AI, and cs.LG

Abstract: We present a novel approach to performing fitness approximation in genetic algorithms (GAs) using machine-learning (ML) models, through dynamic adaptation to the evolutionary state. Maintaining a dataset of sampled individuals along with their actual fitness scores, we continually update a fitness-approximation ML model throughout an evolutionary run. We compare different methods for: 1) switching between actual and approximate fitness, 2) sampling the population, and 3) weighting the samples. Experimental findings demonstrate significant improvement in evolutionary runtimes, with fitness scores that are either identical or slightly lower than that of the fully run GA -- depending on the ratio of approximate-to-actual-fitness computation. Although we focus on evolutionary agents in Gymnasium (game) simulators -- where fitness computation is costly -- our approach is generic and can be easily applied to many different domains.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets