Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 157 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

LuViRA Dataset Validation and Discussion: Comparing Vision, Radio, and Audio Sensors for Indoor Localization (2309.02961v2)

Published 6 Sep 2023 in eess.SP, cs.CV, cs.SD, and eess.AS

Abstract: We present a unique comparative analysis, and evaluation of vision, radio, and audio based localization algorithms. We create the first baseline for the aforementioned sensors using the recently published Lund University Vision, Radio, and Audio (LuViRA) dataset, where all the sensors are synchronized and measured in the same environment. Some of the challenges of using each specific sensor for indoor localization tasks are highlighted. Each sensor is paired with a current state-of-the-art localization algorithm and evaluated for different aspects: localization accuracy, reliability and sensitivity to environment changes, calibration requirements, and potential system complexity. Specifically, the evaluation covers the ORB-SLAM3 algorithm for vision-based localization with an RGB-D camera, a machine-learning algorithm for radio-based localization with massive MIMO technology, and the SFS2 algorithm for audio-based localization with distributed microphones. The results can serve as a guideline and basis for further development of robust and high-precision multi-sensory localization systems, e.g., through sensor fusion, context, and environment-aware adaptation.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: