Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

RLSynC: Offline-Online Reinforcement Learning for Synthon Completion (2309.02671v3)

Published 6 Sep 2023 in cs.LG and cs.AI

Abstract: Retrosynthesis is the process of determining the set of reactant molecules that can react to form a desired product. Semi-template-based retrosynthesis methods, which imitate the reverse logic of synthesis reactions, first predict the reaction centers in the products, and then complete the resulting synthons back into reactants. We develop a new offline-online reinforcement learning method RLSynC for synthon completion in semi-template-based methods. RLSynC assigns one agent to each synthon, all of which complete the synthons by conducting actions step by step in a synchronized fashion. RLSynC learns the policy from both offline training episodes and online interactions, which allows RLSynC to explore new reaction spaces. RLSynC uses a standalone forward synthesis model to evaluate the likelihood of the predicted reactants in synthesizing a product, and thus guides the action search. Our results demonstrate that RLSynC can outperform state-of-the-art synthon completion methods with improvements as high as 14.9%, highlighting its potential in synthesis planning.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets