Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Improved Upper Bound on the Rate-Distortion Function of Images (2309.02574v1)

Published 5 Sep 2023 in eess.IV

Abstract: Recent work has shown that Variational Autoencoders (VAEs) can be used to upper-bound the information rate-distortion (R-D) function of images, i.e., the fundamental limit of lossy image compression. In this paper, we report an improved upper bound on the R-D function of images implemented by (1) introducing a new VAE model architecture, (2) applying variable-rate compression techniques, and (3) proposing a novel \ourfunction{} to stabilize training. We demonstrate that at least 30\% BD-rate reduction w.r.t. the intra prediction mode in VVC codec is achievable, suggesting that there is still great potential for improving lossy image compression. Code is made publicly available at https://github.com/duanzhiihao/lossy-vae.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Zhihao Duan (38 papers)
  2. Jack Ma (4 papers)
  3. Jiangpeng He (41 papers)
  4. Fengqing Zhu (76 papers)