Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Domain Adaptation for Efficiently Fine-tuning Vision Transformer with Encrypted Images (2309.02556v2)

Published 5 Sep 2023 in cs.CV, cs.CR, and cs.LG

Abstract: In recent years, deep neural networks (DNNs) trained with transformed data have been applied to various applications such as privacy-preserving learning, access control, and adversarial defenses. However, the use of transformed data decreases the performance of models. Accordingly, in this paper, we propose a novel method for fine-tuning models with transformed images under the use of the vision transformer (ViT). The proposed domain adaptation method does not cause the accuracy degradation of models, and it is carried out on the basis of the embedding structure of ViT. In experiments, we confirmed that the proposed method prevents accuracy degradation even when using encrypted images with the CIFAR-10 and CIFAR-100 datasets.

Citations (1)

Summary

We haven't generated a summary for this paper yet.