Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Non-asymptotic approximations for Pearson's chi-square statistic and its application to confidence intervals for strictly convex functions of the probability weights of discrete distributions (2309.01882v1)

Published 5 Sep 2023 in math.ST, math.PR, stat.ML, and stat.TH

Abstract: In this paper, we develop a non-asymptotic local normal approximation for multinomial probabilities. First, we use it to find non-asymptotic total variation bounds between the measures induced by uniformly jittered multinomials and the multivariate normals with the same means and covariances. From the total variation bounds, we also derive a comparison of the cumulative distribution functions and quantile coupling inequalities between Pearson's chi-square statistic (written as the normalized quadratic form of a multinomial vector) and its multivariate normal analogue. We apply our results to find confidence intervals for the negative entropy of discrete distributions. Our method can be applied more generally to find confidence intervals for strictly convex functions of the weights of discrete distributions.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.