Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Entropy Bounds for Discrete Random Variables via Maximal Coupling (1209.5259v5)

Published 24 Sep 2012 in cs.IT, math.IT, and math.PR

Abstract: This paper derives new bounds on the difference of the entropies of two discrete random variables in terms of the local and total variation distances between their probability mass functions. The derivation of the bounds relies on maximal coupling, and they apply to discrete random variables which are defined over finite or countably infinite alphabets. Loosened versions of these bounds are demonstrated to reproduce some previously reported results. The use of the new bounds is exemplified for the Poisson approximation, where bounds on the local and total variation distances follow from Stein's method.

Citations (61)

Summary

We haven't generated a summary for this paper yet.