Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Non-asymptotic and Sharp Lower Tail Bounds of Random Variables (1810.09006v3)

Published 21 Oct 2018 in math.PR, cs.LG, math.ST, and stat.TH

Abstract: The non-asymptotic tail bounds of random variables play crucial roles in probability, statistics, and machine learning. Despite much success in developing upper bounds on tail probability in literature, the lower bounds on tail probabilities are relatively fewer. In this paper, we introduce systematic and user-friendly schemes for developing non-asymptotic lower bounds of tail probabilities. In addition, we develop sharp lower tail bounds for the sum of independent sub-Gaussian and sub-exponential random variables, which match the classic Hoeffding-type and Bernstein-type concentration inequalities, respectively. We also provide non-asymptotic matching upper and lower tail bounds for a suite of distributions, including gamma, beta, (regular, weighted, and noncentral) chi-square, binomial, Poisson, Irwin-Hall, etc. We apply the result to establish the matching upper and lower bounds for extreme value expectation of the sum of independent sub-Gaussian and sub-exponential random variables. A statistical application of signal identification from sparse heterogeneous mixtures is finally considered.

Citations (60)

Summary

We haven't generated a summary for this paper yet.