Papers
Topics
Authors
Recent
2000 character limit reached

An Elementary Construction of Modified Hamiltonians and Modified Measures of 2D Kahan Maps

Published 2 Sep 2023 in math.NA and cs.NA | (2309.00799v2)

Abstract: We show how to construct in an elementary way the invariant of the KHK discretisation of a cubic Hamiltonian system in two dimensions. That is, we show that this invariant is expressible as the product of the ratios of affine polynomials defining the prolongation of the three parallel sides of a hexagon. On the vertices of such a hexagon lie the indeterminacy points of the KHK map. This result is obtained analysing the structure of the singular fibres of the known invariant. We apply this construction to several examples, and we prove that a similar result holds true for a case outside the hypotheses of the main theorem, leading us to conjecture that further extensions are possible.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (41)
  1. Jaume Alonso, Yuri B. Suris and Kangning Wei “A Three-Dimensional Generalization of QRT Maps” In J. Nonlinear Sci. 33.6, 2023, pp. Paper No. 117
  2. “Algebraic entropy” In Comm. Math. Phys. 204, 1999, pp. 425–437
  3. A.S. Carstea, A. Dzhamay and T. Takenawa “Fiber-dependent deautonomization of integrable 2D mappings and discrete Painlevé equations” In J. Phys. A: Math. Theor. 50, 2017, pp. 405202\bibrangessep(41pp)
  4. “A classification of two-dimensional integrable mappings and rational elliptic surfaces” In J. Phys. A 45, 2012, pp. 155206 (15pp)
  5. “Using discrete Darboux polynomials to detect and determine preserved measures and integrals of rational maps” In J. Phys. A: Math. Theor. 52, 2019, pp. 31LT01 (11pp)
  6. “Integrability properties of Kahan’s method” In J. Phys. A: Math. Theor. 47.36, 2014, pp. 365202
  7. “Two classes of quadratic vector fields for which the Kahan discretization is integrable” In MI Lecture Notes 74, 2017, pp. 60–62
  8. “Geometric properties of Kahan’s method” In J. Phys. A: Math. Theor. 46.2, 2013, pp. 025201
  9. “Dynamics of bimeromorphic maps of surfaces” In Amer. J. Math. 123.6, 2001, pp. 1135–1169
  10. J.J. Duistermaat “Discrete Integrable Systems: QRT Maps and Elliptic Surfaces”, Springer Monographs in Mathematics Springer New York, 2011
  11. “Growth and integrability of some birational maps in dimension three” In Annales Henri Poincaré 2023, 2023, pp. (61pp)
  12. G. Gubbiotti “Lax pairs for the discrete reduced Nahm systems” In Math. Phys. Anal. Geom. 24, 2021, pp. 9 (13pp)
  13. “Space of initial values of a map with a quartic invariant” In Bull. Aus. Mat. Soc., 2020, pp. 1–12
  14. “Determination of the symmetry group for some QRT roots” arXiv:2305.17107 [math.GA]
  15. “Array programming with NumPy” In Nature 585.7825, 2020, pp. 357–362 DOI: 10.1038/s41586-020-2649-2
  16. “The applicability of the third integral of motion: some numerical experiments” In Astron. J. 69, 1964, pp. 73–79
  17. J. Hietarinta, N. Joshi and F. Nijhoff “Discrete Systems and Integrability”, Cambridge Texts in Applied Mathematics Cambridge University Press, 2016
  18. “Discretization of the Euler Top” In J. Phys. Soc. Japan 69.3, 2000, pp. 627–630
  19. J.D. Hunter “Matplotlib: A 2D graphics environment” In Computing in Science & Engineering 9, 2007, pp. 90–95 DOI: 10.1109/MCSE.2007.55
  20. W. Kahan “Unconventional numerical methods for trajectory calculations” Unpublished lecture notes, 1993
  21. “Unconventional schemes for a class of ordinary differential equations - with applications to the Korteweg-de Vries equation” In J. Comp. Phys. 134, 1997, pp. 316–331
  22. “Three classes of quadratic vector fields for which the Kahan discretisation is the root of a generalised Manin transformation” In J. Phys. A: Math. Theor. 52, 2019, pp. 045204 (10pp)
  23. “Discretization of the Lagrange top” In J. Phys. Soc. Japan 69, 2000, pp. 3193–3199
  24. Kunihiko Kodaira “On compact analytic surfaces: II” In Ann. Math., 1963, pp. 563–626
  25. R.I. McLachlan, D.I. McLaren and G.R.W. Quispel “Birational maps from polarization and the preservation of measure and integrals” In J. Phys. A: Math. Theor. 56.36 IOP Publishing, 2023, pp. 365202
  26. “The Mordell-Weil lattice of a rational elliptic surface” In Comment. Math. Univ. St. Pauli 40, 1991
  27. M. Petrera, A. Pfadler and Yu.B. Suris “On integrability of Hirota–Kimura type discretizations: Experimental study of the discrete Clebsch system” In Exp. Math. 18, 2009, pp. 223–247
  28. M. Petrera, A. Pfadler and Yu.B. Suris “On Integrability of Hirota–Kimura Type Discretizations” In Regul. Chaot. Dyn. 16, 2011, pp. 245–289
  29. “On the Hamiltonian structure of Hirota-Kimura discretization of the Euler top” In Math. Nachr. 283.11, 2010, pp. 1654–1663
  30. “Manin involutions for elliptic pencils and discrete integrable systems” In Math. Phys. Anal. Geom. 24.1, 2021, pp. 1–26
  31. “New classes of quadratic vector fields admitting integral-preserving Kahan-Hirota-Kimura discretizations” In J. Phys. A: Math. Theor. 50, 2017, pp. 205203\bibrangessep(13pp)
  32. Matteo Petrera, Jennifer Smirin and Yuri B. Suris “Geometry of the Kahan discretizations of planar quadratic Hamiltonian systems” In Proc. Roy. Soc. A. 475.2223, 2019, pp. 20180761\bibrangessep(13pp)
  33. “Characterizing singular curves in parametrized families of biquadratics” In J. Phys. A: Math. Theor. 41.11, 2008, pp. 115203\bibrangessep(28pp)
  34. G.R.W. Quispel, J.A.G. Roberts and C.J. Thompson “Integrable mappings and soliton equations” In Phys. Lett. A 126, 1988, pp. 419
  35. G.R.W. Quispel, J.A.G. Roberts and C.J. Thompson “Integrable mappings and soliton equations II” In Physica D 34.1, 1989, pp. 183–192
  36. “Mordell–Weil Lattices”, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics Springer Nature Singapore, 2019
  37. I.R. Shafarevich “Basic Algebraic Geometry 1” 213, Grundlehren der mathematischen Wissenschaften Berlin, Heidelberg, New York: Springer-Verlag, 1994
  38. M. Tabor “Chaos and Integrability in Nonlinear Dynamics” New York: Wiley, 1989
  39. T. Takenawa “Algebraic entropy and the space of initial values for discrete dynamical systems” In J. Phys. A: Math. Gen. 34, 2001, pp. 10533
  40. T. Tsuda “Integrable mappings via rational elliptic surfaces” In J. Phys. A: Math. Gen. 37, 2004, pp. 2721
  41. R. Zander “On the singularity structure of Kahan discretizations of a class of quadratic vector fields” In Europ. J. Math. 7.3, 2021, pp. 1046–1073
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.