Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Systematic Study on Quantifying Bias in GAN-Augmented Data (2308.13554v1)

Published 23 Aug 2023 in cs.LG, cs.AI, and cs.CV

Abstract: Generative adversarial networks (GANs) have recently become a popular data augmentation technique used by machine learning practitioners. However, they have been shown to suffer from the so-called mode collapse failure mode, which makes them vulnerable to exacerbating biases on already skewed datasets, resulting in the generated data distribution being less diverse than the training distribution. To this end, we address the problem of quantifying the extent to which mode collapse occurs. This study is a systematic effort focused on the evaluation of state-of-the-art metrics that can potentially quantify biases in GAN-augmented data. We show that, while several such methods are available, there is no single metric that quantifies bias exacerbation reliably over the span of different image domains.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Denis Liu (3 papers)

Summary

We haven't generated a summary for this paper yet.