Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Reinforcement Learning-driven Cross-Community Energy Interaction Optimal Scheduling (2308.12554v2)

Published 24 Aug 2023 in eess.SY, cs.LG, and cs.SY

Abstract: In order to coordinate energy interactions among various communities and energy conversions among multi-energy subsystems within the multi-community integrated energy system under uncertain conditions, and achieve overall optimization and scheduling of the comprehensive energy system, this paper proposes a comprehensive scheduling model that utilizes a multi-agent deep reinforcement learning algorithm to learn load characteristics of different communities and make decisions based on this knowledge. In this model, the scheduling problem of the integrated energy system is transformed into a Markov decision process and solved using a data-driven deep reinforcement learning algorithm, which avoids the need for modeling complex energy coupling relationships between multi-communities and multi-energy subsystems. The simulation results show that the proposed method effectively captures the load characteristics of different communities and utilizes their complementary features to coordinate reasonable energy interactions among them. This leads to a reduction in wind curtailment rate from 16.3% to 0% and lowers the overall operating cost by 5445.6 Yuan, demonstrating significant economic and environmental benefits.

Summary

We haven't generated a summary for this paper yet.