Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

NNPP: A Learning-Based Heuristic Model for Accelerating Optimal Path Planning on Uneven Terrain (2308.04792v3)

Published 9 Aug 2023 in cs.RO and cs.AI

Abstract: Intelligent autonomous path planning is essential for enhancing the exploration efficiency of mobile robots operating in uneven terrains like planetary surfaces and off-road environments.In this paper, we propose the NNPP model for computing the heuristic region, enabling foundation algorithms like Astar to find the optimal path solely within this reduced search space, effectively decreasing the search time. The NNPP model learns semantic information about start and goal locations, as well as map representations, from numerous pre-annotated optimal path demonstrations, and produces a probabilistic distribution over each pixel representing the likelihood of it belonging to an optimal path on the map. More specifically, the paper computes the traversal cost for each grid cell from the slope, roughness and elevation difference obtained from the digital elevation model. Subsequently, the start and goal locations are encoded using a Gaussian distribution and different location encoding parameters are analyzed for their effect on model performance. After training, the NNPP model is able to \textcolor{revision}{accelerate} path planning on novel maps.

Summary

We haven't generated a summary for this paper yet.