Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Survey on Computer Vision Techniques for Internet-of-Things Devices (2308.02553v1)

Published 2 Aug 2023 in cs.CV and cs.LG

Abstract: Deep neural networks (DNNs) are state-of-the-art techniques for solving most computer vision problems. DNNs require billions of parameters and operations to achieve state-of-the-art results. This requirement makes DNNs extremely compute, memory, and energy-hungry, and consequently difficult to deploy on small battery-powered Internet-of-Things (IoT) devices with limited computing resources. Deployment of DNNs on Internet-of-Things devices, such as traffic cameras, can improve public safety by enabling applications such as automatic accident detection and emergency response.Through this paper, we survey the recent advances in low-power and energy-efficient DNN implementations that improve the deployability of DNNs without significantly sacrificing accuracy. In general, these techniques either reduce the memory requirements, the number of arithmetic operations, or both. The techniques can be divided into three major categories: neural network compression, network architecture search and design, and compiler and graph optimizations. In this paper, we survey both low-power techniques for both convolutional and transformer DNNs, and summarize the advantages, disadvantages, and open research problems.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Ishmeet Kaur (3 papers)
  2. Adwaita Janardhan Jadhav (3 papers)
Citations (1)