Tunneling to Holographic Traversable Wormholes (2308.00871v2)
Abstract: We study nonperturbative effects of quantum gravity in a system consisting of a coupled pair of holographic CFTs. The AdS$_4$/CFT$_3$ system has three possible ground states: two copies of empty AdS, a pair of extremal AdS black holes, and an eternal AdS traversable wormhole. We give a recipe for calculating transition rates via gravitational instantons and test it by calculating the emission rate of radiation shells from a black hole. We calculate the nucleation rate of a traversable wormhole between a pair of AdS-RN black holes in the canonical and microcanonical ensembles. Our results give predictions of nonpertubative quantum gravity that can be tested in a holographic simulation.
- R. P. Geroch, “Topology in general relativity,” Journal of Mathematical Physics 8 no. 4, (1967) 782–786.
- F. J. Tipler, “Singularities and causality violation,” Annals Phys. 108 (1977) 1–36.
- G. T. Horowitz, “Topology change in classical and quantum gravity,” Class. Quant. Grav. 8 (1991) 587–602.
- S. Gao and R. M. Wald, “Theorems on gravitational time delay and related issues,” Class. Quant. Grav. 17 (2000) 4999–5008, arXiv:gr-qc/0007021.
- N. Graham and K. D. Olum, “Achronal averaged null energy condition,” Phys. Rev. D 76 (2007) 064001, arXiv:0705.3193 [gr-qc].
- G. T. Horowitz, D. Marolf, J. E. Santos, and D. Wang, “Creating a Traversable Wormhole,” Class. Quant. Grav. 36 no. 20, (2019) 205011, arXiv:1904.02187 [hep-th].
- J. Maldacena and A. Milekhin, “SYK wormhole formation in real time,” JHEP 04 (2021) 258, arXiv:1912.03276 [hep-th].
- T.-G. Zhou and P. Zhang, “Tunneling through an Eternal Traversable Wormhole,” Phys. Rev. B 102 (2020) 224305, arXiv:2009.02641 [cond-mat.str-el].
- S. Bintanja, R. Espindola, B. Freivogel, and D. Nikolakopoulou, “How to make traversable wormholes: eternal AdS44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT wormholes from coupled CFT’s,” JHEP 10 (2021) 173, arXiv:2102.06628 [hep-th].
- J. Maldacena, A. Milekhin, and F. Popov, “Traversable wormholes in four dimensions,” Class. Quant. Grav. 40 no. 15, (2023) 155016, arXiv:1807.04726 [hep-th].
- P. Gao, D. L. Jafferis, and A. C. Wall, “Traversable Wormholes via a Double Trace Deformation,” JHEP 12 (2017) 151, arXiv:1608.05687 [hep-th].
- J. Maldacena and X.-L. Qi, “Eternal traversable wormhole,” arXiv:1804.00491 [hep-th].
- P. O. Mazur, “Nonperturbative Instability of Black Holes in Quantum Gravity,” Mod. Phys. Lett. A 4 (1989) 1497, arXiv:gr-qc/9709079.
- P. Kraus and F. Wilczek, “Selfinteraction correction to black hole radiance,” Nucl. Phys. B 433 (1995) 403–420, arXiv:gr-qc/9408003.
- M. K. Parikh and F. Wilczek, “Hawking radiation as tunneling,” Phys. Rev. Lett. 85 (2000) 5042–5045, arXiv:hep-th/9907001.
- L. Aalsma and J. P. van der Schaar, “Extremal Tunneling and Anti-de Sitter Instantons,” JHEP 03 (2018) 145, arXiv:1801.04930 [hep-th].
- S. Coleman, Aspects of symmetry: selected Erice lectures. Cambridge University Press, 1988.
- S. W. Hawking and I. G. Moss, “Supercooled Phase Transitions in the Very Early Universe,” Phys. Lett. B 110 (1982) 35–38.
- M. Cvetic, S. Griffies, and S.-J. Rey, “Static domain walls in N=1 supergravity,” Nucl. Phys. B 381 (1992) 301–328, arXiv:hep-th/9201007.
- R. Gregory, I. G. Moss, and N. Oshita, “Black Holes, Oscillating Instantons, and the Hawking-Moss transition,” JHEP 07 (2020) 024, arXiv:2003.04927 [hep-th].
- S. Hellerman, D. Orlando, S. Reffert, and M. Watanabe, “On the CFT Operator Spectrum at Large Global Charge,” JHEP 12 (2015) 071, arXiv:1505.01537 [hep-th].
- B. Freivogel, V. Godet, E. Morvan, J. F. Pedraza, and A. Rotundo, “Lessons on Eternal Traversable Wormholes in AdS,” JHEP 07 (2019) 122, arXiv:1903.05732 [hep-th].
- J. Maldacena, A. Milekhin, and F. Popov, “Traversable wormholes in four dimensions,” arXiv:1807.04726 [hep-th].
- J. Preskill, P. Schwarz, A. Shapere, S. Trivedi, and F. Wilczek, “Limitations on the statistical description of black holes,” Modern Physics Letters A 6 no. 26, (1991) 2353–2361.
- W. Cottrell, B. Freivogel, D. M. Hofman, and S. F. Lokhande, “How to Build the Thermofield Double State,” JHEP 02 (2019) 058, arXiv:1811.11528 [hep-th].
- V. Balasubramanian and P. Kraus, “A Stress tensor for Anti-de Sitter gravity,” Commun. Math. Phys. 208 (1999) 413–428, arXiv:hep-th/9902121.
- G. T. Horowitz, “Comments on black holes in string theory,” Class. Quant. Grav. 17 (2000) 1107–1116, arXiv:hep-th/9910082.
- J. Maldacena, J. Michelson, and A. Strominger, “Anti-de sitter fragmentation,” Journal of High Energy Physics 1999 no. 02, (1999) 011.
- D. Anninos, T. Anous, F. Denef, and L. Peeters, “Holographic vitrification,” Journal of High Energy Physics 2015 no. 4, (2015) 1–81.
- S. S. Gubser, “Breaking an Abelian gauge symmetry near a black hole horizon,” Phys. Rev. D 78 (2008) 065034, arXiv:0801.2977 [hep-th].
- S. A. Hartnoll, C. P. Herzog, and G. T. Horowitz, “Building a Holographic Superconductor,” Phys. Rev. Lett. 101 (2008) 031601, arXiv:0803.3295 [hep-th].
- S. A. Hartnoll, C. P. Herzog, and G. T. Horowitz, “Holographic Superconductors,” JHEP 12 (2008) 015, arXiv:0810.1563 [hep-th].
- S.-S. Lee, “A Non-Fermi Liquid from a Charged Black Hole: A Critical Fermi Ball,” Phys. Rev. D 79 (2009) 086006, arXiv:0809.3402 [hep-th].
- H. Liu, J. McGreevy, and D. Vegh, “Non-Fermi liquids from holography,” Phys. Rev. D 83 (2011) 065029, arXiv:0903.2477 [hep-th].
- M. Cubrovic, J. Zaanen, and K. Schalm, “String Theory, Quantum Phase Transitions and the Emergent Fermi-Liquid,” Science 325 (2009) 439–444, arXiv:0904.1993 [hep-th].
- T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, “Emergent quantum criticality, Fermi surfaces, and AdS(2),” Phys. Rev. D 83 (2011) 125002, arXiv:0907.2694 [hep-th].
- J. Maldacena, “Comments on magnetic black holes,” arXiv:2004.06084 [hep-th].
- S. Coleman, “Fate of the false vacuum: Semiclassical theory,” Physical Review D 15 no. 10, (1977) 2929.
- C. G. Callan, Jr. and S. R. Coleman, “The Fate of the False Vacuum. 2. First Quantum Corrections,” Phys. Rev. D 16 (1977) 1762–1768.
- S. R. Coleman and F. De Luccia, “Gravitational Effects on and of Vacuum Decay,” Phys. Rev. D 21 (1980) 3305.
- S. Coleman, “Black holes as red herrings: topological fluctuations and the loss of quantum coherence,” Nuclear Physics B 307 no. 4, (1988) 867–882.
- J. Cotler and K. Jensen, “Gravitational Constrained Instantons,” Phys. Rev. D 104 (2021) 081501, arXiv:2010.02241 [hep-th].
- H. Herodotou, Coleman-de Luccia Instantons with Gravity. PhD thesis, Imperial Coll., London, 2021.
- D. J. Gross, M. J. Perry, and L. G. Yaffe, “Instability of Flat Space at Finite Temperature,” Phys. Rev. D 25 (1982) 330–355.
- E. Witten, “Instability of the Kaluza-Klein Vacuum,” Nucl. Phys. B 195 (1982) 481–492.
- J. Maldacena, “Vacuum decay into Anti de Sitter space,” arXiv:1012.0274 [hep-th].
- C. Charmousis and A. Padilla, “The Instability of Vacua in Gauss-Bonnet Gravity,” JHEP 12 (2008) 038, arXiv:0807.2864 [hep-th].
- D. J. Gross, R. D. Pisarski, and L. G. Yaffe, “Qcd and instantons at finite temperature,” Reviews of Modern Physics 53 no. 1, (1981) 43.
- A. R. Brown and E. J. Weinberg, “Thermal derivation of the coleman-de luccia tunneling prescription,” Physical Review D 76 no. 6, (2007) 064003.
- S. K. Blau, E. I. Guendelman, and A. H. Guth, “Dynamics of false-vacuum bubbles,” Physical Review D 35 no. 6, (1987) 1747.
- B. Freivogel, G. T. Horowitz, and S. Shenker, “Colliding with a crunching bubble,” JHEP 05 (2007) 090, arXiv:hep-th/0703146.
- S. J. Kolitch and D. M. Eardley, “Quantum decay of domain walls in cosmology: 1. Instanton approach,” Phys. Rev. D 56 (1997) 4651–4662, arXiv:gr-qc/9706011.
- K. Copsey, “Gravitation and tunnelling: Subtleties of the thin-wall approximation and rapid decays,” arXiv:1108.2255 [gr-qc].
- Cambridge University Press, 2023.
- S. B. Giddings and A. Strominger, “Baby universe, third quantization and the cosmological constant,” Nuclear Physics B 321 no. 2, (1989) 481–508.
- K.-M. Lee and E. J. Weinberg, “Decay of the True Vacuum in Curved Space-time,” Phys. Rev. D 36 (1987) 1088.
- E. Farhi, A. H. Guth, and J. Guven, “Is It Possible to Create a Universe in the Laboratory by Quantum Tunneling?,” Nucl. Phys. B 339 (1990) 417–490.
- B. Freivogel, V. E. Hubeny, A. Maloney, R. C. Myers, M. Rangamani, and S. Shenker, “Inflation in AdS/CFT,” JHEP 03 (2006) 007, arXiv:hep-th/0510046.
- D. Marolf, “Microcanonical Path Integrals and the Holography of small Black Hole Interiors,” JHEP 09 (2018) 114, arXiv:1808.00394 [hep-th].
- J. D. Brown and J. W. York, “Microcanonical functional integral for the gravitational field,” Phys. Rev. D 47 (Feb, 1993) 1420–1431.
- V. Iyer and R. M. Wald, “Comparison of the noether charge and euclidean methods for computing the entropy of stationary black holes,” Physical Review D 52 no. 8, (Oct, 1995) 4430–4439.
- E. Witten, “A note on boundary conditions in euclidean gravity,” 2020.
- A. Chamblin, R. Emparan, C. V. Johnson, and R. C. Myers, “Holography, thermodynamics and fluctuations of charged AdS black holes,” Phys. Rev. D 60 (1999) 104026, arXiv:hep-th/9904197.
- R. Monteiro and J. E. Santos, “Negative modes and the thermodynamics of Reissner-Nordstrom black holes,” Phys. Rev. D 79 (2009) 064006, arXiv:0812.1767 [gr-qc].
- S. W. Hawking and G. T. Horowitz, “The Gravitational Hamiltonian, action, entropy and surface terms,” Class. Quant. Grav. 13 (1996) 1487–1498, arXiv:gr-qc/9501014.
- R. Gregory, I. G. Moss, and B. Withers, “Black holes as bubble nucleation sites,” JHEP 03 (2014) 081, arXiv:1401.0017 [hep-th].
- D. Marolf, “Gravitational thermodynamics without the conformal factor problem: partition functions and Euclidean saddles from Lorentzian path integrals,” JHEP 07 (2022) 108, arXiv:2203.07421 [hep-th].
- M. Banados, C. Teitelboim, and J. Zanelli, “Black hole entropy and the dimensional continuation of the gauss-bonnet theorem,” Physical review letters 72 no. 7, (1994) 957.
- L. V. Iliesiu and G. J. Turiaci, “The statistical mechanics of near-extremal black holes,” JHEP 05 (2021) 145, arXiv:2003.02860 [hep-th].
- S. Mendoza and S. Silva, “The matter Lagrangian of an ideal fluid,” Int. J. Geom. Meth. Mod. Phys. 18 no. 04, (2021) 2150059, arXiv:2011.04175 [gr-qc].
- W. Fischler, D. Morgan, and J. Polchinski, “Quantization of False Vacuum Bubbles: A Hamiltonian Treatment of Gravitational Tunneling,” Phys. Rev. D 42 (1990) 4042–4055.
- J. Maldacena, “A simple quantum system that describes a black hole,” arXiv:2303.11534 [hep-th].
- P. Gao and D. L. Jafferis, “A traversable wormhole teleportation protocol in the syk model,” Journal of High Energy Physics 2021 no. 7, (2021) 1–44.
- E. Cáceres, A. Misobuchi, and R. Pimentel, “Sparse syk and traversable wormholes,” Journal of High Energy Physics 2021 no. 11, (2021) 1–32.
- D. Jafferis, A. Zlokapa, J. D. Lykken, D. K. Kolchmeyer, S. I. Davis, N. Lauk, H. Neven, and M. Spiropulu, “Traversable wormhole dynamics on a quantum processor,” Nature 612 no. 7938, (2022) 51–55.
- B. Kobrin, T. Schuster, and N. Y. Yao, “Comment on” traversable wormhole dynamics on a quantum processor”,” arXiv preprint arXiv:2302.07897 (2023) .
- A. Castro and E. Verheijden, “Near-AdS2 Spectroscopy: Classifying the Spectrum of Operators and Interactions in N=2 4D Supergravity,” Universe 7 no. 12, (2021) 475, arXiv:2110.04208 [hep-th].
- M. Heydeman, L. V. Iliesiu, G. J. Turiaci, and W. Zhao, “The statistical mechanics of near-BPS black holes,” J. Phys. A 55 no. 1, (2022) 014004, arXiv:2011.01953 [hep-th].
- H. W. Lin, J. Maldacena, L. Rozenberg, and J. Shan, “Looking at supersymmetric black holes for a very long time,” SciPost Phys. 14 (2023) 128, arXiv:2207.00408 [hep-th].
- H. W. Lin, J. Maldacena, L. Rozenberg, and J. Shan, “Holography for people with no time,” SciPost Phys. 14 no. 6, (2023) 150, arXiv:2207.00407 [hep-th].
- F. Larsen and S. Paranjape, “Thermodynamics of near BPS black holes in AdS44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT and AdS77{}_{7}start_FLOATSUBSCRIPT 7 end_FLOATSUBSCRIPT,” JHEP 10 (2021) 198, arXiv:2010.04359 [hep-th].
- H. Geng, A. Karch, C. Perez-Pardavila, S. Raju, L. Randall, M. Riojas, and S. Shashi, “Inconsistency of islands in theories with long-range gravity,” JHEP 01 (2022) 182, arXiv:2107.03390 [hep-th].
- S. Ryu and T. Takayanagi, “Holographic derivation of entanglement entropy from AdS/CFT,” Phys. Rev. Lett. 96 (2006) 181602, arXiv:hep-th/0603001.
- Z. Fu and D. Marolf, “Bag-of-gold spacetimes, Euclidean wormholes, and inflation from domain walls in AdS/CFT,” JHEP 11 (2019) 040, arXiv:1909.02505 [hep-th].
- L. Battarra, G. Lavrelashvili, and J.-L. Lehners, “Negative Modes of Oscillating Instantons,” Phys. Rev. D 86 (2012) 124001, arXiv:1208.2182 [hep-th].
- B.-H. Lee, W. Lee, D. Ro, and D.-h. Yeom, “Oscillating Fubini instantons in curved space,” Phys. Rev. D 91 no. 12, (2015) 124044, arXiv:1409.3935 [hep-th].
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.