Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Tunneling to Holographic Traversable Wormholes (2308.00871v2)

Published 1 Aug 2023 in hep-th

Abstract: We study nonperturbative effects of quantum gravity in a system consisting of a coupled pair of holographic CFTs. The AdS$_4$/CFT$_3$ system has three possible ground states: two copies of empty AdS, a pair of extremal AdS black holes, and an eternal AdS traversable wormhole. We give a recipe for calculating transition rates via gravitational instantons and test it by calculating the emission rate of radiation shells from a black hole. We calculate the nucleation rate of a traversable wormhole between a pair of AdS-RN black holes in the canonical and microcanonical ensembles. Our results give predictions of nonpertubative quantum gravity that can be tested in a holographic simulation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (86)
  1. R. P. Geroch, “Topology in general relativity,” Journal of Mathematical Physics 8 no. 4, (1967) 782–786.
  2. F. J. Tipler, “Singularities and causality violation,” Annals Phys. 108 (1977) 1–36.
  3. G. T. Horowitz, “Topology change in classical and quantum gravity,” Class. Quant. Grav. 8 (1991) 587–602.
  4. S. Gao and R. M. Wald, “Theorems on gravitational time delay and related issues,” Class. Quant. Grav. 17 (2000) 4999–5008, arXiv:gr-qc/0007021.
  5. N. Graham and K. D. Olum, “Achronal averaged null energy condition,” Phys. Rev. D 76 (2007) 064001, arXiv:0705.3193 [gr-qc].
  6. G. T. Horowitz, D. Marolf, J. E. Santos, and D. Wang, “Creating a Traversable Wormhole,” Class. Quant. Grav. 36 no. 20, (2019) 205011, arXiv:1904.02187 [hep-th].
  7. J. Maldacena and A. Milekhin, “SYK wormhole formation in real time,” JHEP 04 (2021) 258, arXiv:1912.03276 [hep-th].
  8. T.-G. Zhou and P. Zhang, “Tunneling through an Eternal Traversable Wormhole,” Phys. Rev. B 102 (2020) 224305, arXiv:2009.02641 [cond-mat.str-el].
  9. S. Bintanja, R. Espindola, B. Freivogel, and D. Nikolakopoulou, “How to make traversable wormholes: eternal AdS44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT wormholes from coupled CFT’s,” JHEP 10 (2021) 173, arXiv:2102.06628 [hep-th].
  10. J. Maldacena, A. Milekhin, and F. Popov, “Traversable wormholes in four dimensions,” Class. Quant. Grav. 40 no. 15, (2023) 155016, arXiv:1807.04726 [hep-th].
  11. P. Gao, D. L. Jafferis, and A. C. Wall, “Traversable Wormholes via a Double Trace Deformation,” JHEP 12 (2017) 151, arXiv:1608.05687 [hep-th].
  12. J. Maldacena and X.-L. Qi, “Eternal traversable wormhole,” arXiv:1804.00491 [hep-th].
  13. P. O. Mazur, “Nonperturbative Instability of Black Holes in Quantum Gravity,” Mod. Phys. Lett. A 4 (1989) 1497, arXiv:gr-qc/9709079.
  14. P. Kraus and F. Wilczek, “Selfinteraction correction to black hole radiance,” Nucl. Phys. B 433 (1995) 403–420, arXiv:gr-qc/9408003.
  15. M. K. Parikh and F. Wilczek, “Hawking radiation as tunneling,” Phys. Rev. Lett. 85 (2000) 5042–5045, arXiv:hep-th/9907001.
  16. L. Aalsma and J. P. van der Schaar, “Extremal Tunneling and Anti-de Sitter Instantons,” JHEP 03 (2018) 145, arXiv:1801.04930 [hep-th].
  17. S. Coleman, Aspects of symmetry: selected Erice lectures. Cambridge University Press, 1988.
  18. S. W. Hawking and I. G. Moss, “Supercooled Phase Transitions in the Very Early Universe,” Phys. Lett. B 110 (1982) 35–38.
  19. M. Cvetic, S. Griffies, and S.-J. Rey, “Static domain walls in N=1 supergravity,” Nucl. Phys. B 381 (1992) 301–328, arXiv:hep-th/9201007.
  20. R. Gregory, I. G. Moss, and N. Oshita, “Black Holes, Oscillating Instantons, and the Hawking-Moss transition,” JHEP 07 (2020) 024, arXiv:2003.04927 [hep-th].
  21. S. Hellerman, D. Orlando, S. Reffert, and M. Watanabe, “On the CFT Operator Spectrum at Large Global Charge,” JHEP 12 (2015) 071, arXiv:1505.01537 [hep-th].
  22. B. Freivogel, V. Godet, E. Morvan, J. F. Pedraza, and A. Rotundo, “Lessons on Eternal Traversable Wormholes in AdS,” JHEP 07 (2019) 122, arXiv:1903.05732 [hep-th].
  23. J. Maldacena, A. Milekhin, and F. Popov, “Traversable wormholes in four dimensions,” arXiv:1807.04726 [hep-th].
  24. J. Preskill, P. Schwarz, A. Shapere, S. Trivedi, and F. Wilczek, “Limitations on the statistical description of black holes,” Modern Physics Letters A 6 no. 26, (1991) 2353–2361.
  25. W. Cottrell, B. Freivogel, D. M. Hofman, and S. F. Lokhande, “How to Build the Thermofield Double State,” JHEP 02 (2019) 058, arXiv:1811.11528 [hep-th].
  26. V. Balasubramanian and P. Kraus, “A Stress tensor for Anti-de Sitter gravity,” Commun. Math. Phys. 208 (1999) 413–428, arXiv:hep-th/9902121.
  27. G. T. Horowitz, “Comments on black holes in string theory,” Class. Quant. Grav. 17 (2000) 1107–1116, arXiv:hep-th/9910082.
  28. J. Maldacena, J. Michelson, and A. Strominger, “Anti-de sitter fragmentation,” Journal of High Energy Physics 1999 no. 02, (1999) 011.
  29. D. Anninos, T. Anous, F. Denef, and L. Peeters, “Holographic vitrification,” Journal of High Energy Physics 2015 no. 4, (2015) 1–81.
  30. S. S. Gubser, “Breaking an Abelian gauge symmetry near a black hole horizon,” Phys. Rev. D 78 (2008) 065034, arXiv:0801.2977 [hep-th].
  31. S. A. Hartnoll, C. P. Herzog, and G. T. Horowitz, “Building a Holographic Superconductor,” Phys. Rev. Lett. 101 (2008) 031601, arXiv:0803.3295 [hep-th].
  32. S. A. Hartnoll, C. P. Herzog, and G. T. Horowitz, “Holographic Superconductors,” JHEP 12 (2008) 015, arXiv:0810.1563 [hep-th].
  33. S.-S. Lee, “A Non-Fermi Liquid from a Charged Black Hole: A Critical Fermi Ball,” Phys. Rev. D 79 (2009) 086006, arXiv:0809.3402 [hep-th].
  34. H. Liu, J. McGreevy, and D. Vegh, “Non-Fermi liquids from holography,” Phys. Rev. D 83 (2011) 065029, arXiv:0903.2477 [hep-th].
  35. M. Cubrovic, J. Zaanen, and K. Schalm, “String Theory, Quantum Phase Transitions and the Emergent Fermi-Liquid,” Science 325 (2009) 439–444, arXiv:0904.1993 [hep-th].
  36. T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, “Emergent quantum criticality, Fermi surfaces, and AdS(2),” Phys. Rev. D 83 (2011) 125002, arXiv:0907.2694 [hep-th].
  37. J. Maldacena, “Comments on magnetic black holes,” arXiv:2004.06084 [hep-th].
  38. S. Coleman, “Fate of the false vacuum: Semiclassical theory,” Physical Review D 15 no. 10, (1977) 2929.
  39. C. G. Callan, Jr. and S. R. Coleman, “The Fate of the False Vacuum. 2. First Quantum Corrections,” Phys. Rev. D 16 (1977) 1762–1768.
  40. S. R. Coleman and F. De Luccia, “Gravitational Effects on and of Vacuum Decay,” Phys. Rev. D 21 (1980) 3305.
  41. S. Coleman, “Black holes as red herrings: topological fluctuations and the loss of quantum coherence,” Nuclear Physics B 307 no. 4, (1988) 867–882.
  42. J. Cotler and K. Jensen, “Gravitational Constrained Instantons,” Phys. Rev. D 104 (2021) 081501, arXiv:2010.02241 [hep-th].
  43. H. Herodotou, Coleman-de Luccia Instantons with Gravity. PhD thesis, Imperial Coll., London, 2021.
  44. D. J. Gross, M. J. Perry, and L. G. Yaffe, “Instability of Flat Space at Finite Temperature,” Phys. Rev. D 25 (1982) 330–355.
  45. E. Witten, “Instability of the Kaluza-Klein Vacuum,” Nucl. Phys. B 195 (1982) 481–492.
  46. J. Maldacena, “Vacuum decay into Anti de Sitter space,” arXiv:1012.0274 [hep-th].
  47. C. Charmousis and A. Padilla, “The Instability of Vacua in Gauss-Bonnet Gravity,” JHEP 12 (2008) 038, arXiv:0807.2864 [hep-th].
  48. D. J. Gross, R. D. Pisarski, and L. G. Yaffe, “Qcd and instantons at finite temperature,” Reviews of Modern Physics 53 no. 1, (1981) 43.
  49. A. R. Brown and E. J. Weinberg, “Thermal derivation of the coleman-de luccia tunneling prescription,” Physical Review D 76 no. 6, (2007) 064003.
  50. S. K. Blau, E. I. Guendelman, and A. H. Guth, “Dynamics of false-vacuum bubbles,” Physical Review D 35 no. 6, (1987) 1747.
  51. B. Freivogel, G. T. Horowitz, and S. Shenker, “Colliding with a crunching bubble,” JHEP 05 (2007) 090, arXiv:hep-th/0703146.
  52. S. J. Kolitch and D. M. Eardley, “Quantum decay of domain walls in cosmology: 1. Instanton approach,” Phys. Rev. D 56 (1997) 4651–4662, arXiv:gr-qc/9706011.
  53. K. Copsey, “Gravitation and tunnelling: Subtleties of the thin-wall approximation and rapid decays,” arXiv:1108.2255 [gr-qc].
  54. Cambridge University Press, 2023.
  55. S. B. Giddings and A. Strominger, “Baby universe, third quantization and the cosmological constant,” Nuclear Physics B 321 no. 2, (1989) 481–508.
  56. K.-M. Lee and E. J. Weinberg, “Decay of the True Vacuum in Curved Space-time,” Phys. Rev. D 36 (1987) 1088.
  57. E. Farhi, A. H. Guth, and J. Guven, “Is It Possible to Create a Universe in the Laboratory by Quantum Tunneling?,” Nucl. Phys. B 339 (1990) 417–490.
  58. B. Freivogel, V. E. Hubeny, A. Maloney, R. C. Myers, M. Rangamani, and S. Shenker, “Inflation in AdS/CFT,” JHEP 03 (2006) 007, arXiv:hep-th/0510046.
  59. D. Marolf, “Microcanonical Path Integrals and the Holography of small Black Hole Interiors,” JHEP 09 (2018) 114, arXiv:1808.00394 [hep-th].
  60. J. D. Brown and J. W. York, “Microcanonical functional integral for the gravitational field,” Phys. Rev. D 47 (Feb, 1993) 1420–1431.
  61. V. Iyer and R. M. Wald, “Comparison of the noether charge and euclidean methods for computing the entropy of stationary black holes,” Physical Review D 52 no. 8, (Oct, 1995) 4430–4439.
  62. E. Witten, “A note on boundary conditions in euclidean gravity,” 2020.
  63. A. Chamblin, R. Emparan, C. V. Johnson, and R. C. Myers, “Holography, thermodynamics and fluctuations of charged AdS black holes,” Phys. Rev. D 60 (1999) 104026, arXiv:hep-th/9904197.
  64. R. Monteiro and J. E. Santos, “Negative modes and the thermodynamics of Reissner-Nordstrom black holes,” Phys. Rev. D 79 (2009) 064006, arXiv:0812.1767 [gr-qc].
  65. S. W. Hawking and G. T. Horowitz, “The Gravitational Hamiltonian, action, entropy and surface terms,” Class. Quant. Grav. 13 (1996) 1487–1498, arXiv:gr-qc/9501014.
  66. R. Gregory, I. G. Moss, and B. Withers, “Black holes as bubble nucleation sites,” JHEP 03 (2014) 081, arXiv:1401.0017 [hep-th].
  67. D. Marolf, “Gravitational thermodynamics without the conformal factor problem: partition functions and Euclidean saddles from Lorentzian path integrals,” JHEP 07 (2022) 108, arXiv:2203.07421 [hep-th].
  68. M. Banados, C. Teitelboim, and J. Zanelli, “Black hole entropy and the dimensional continuation of the gauss-bonnet theorem,” Physical review letters 72 no. 7, (1994) 957.
  69. L. V. Iliesiu and G. J. Turiaci, “The statistical mechanics of near-extremal black holes,” JHEP 05 (2021) 145, arXiv:2003.02860 [hep-th].
  70. S. Mendoza and S. Silva, “The matter Lagrangian of an ideal fluid,” Int. J. Geom. Meth. Mod. Phys. 18 no. 04, (2021) 2150059, arXiv:2011.04175 [gr-qc].
  71. W. Fischler, D. Morgan, and J. Polchinski, “Quantization of False Vacuum Bubbles: A Hamiltonian Treatment of Gravitational Tunneling,” Phys. Rev. D 42 (1990) 4042–4055.
  72. J. Maldacena, “A simple quantum system that describes a black hole,” arXiv:2303.11534 [hep-th].
  73. P. Gao and D. L. Jafferis, “A traversable wormhole teleportation protocol in the syk model,” Journal of High Energy Physics 2021 no. 7, (2021) 1–44.
  74. E. Cáceres, A. Misobuchi, and R. Pimentel, “Sparse syk and traversable wormholes,” Journal of High Energy Physics 2021 no. 11, (2021) 1–32.
  75. D. Jafferis, A. Zlokapa, J. D. Lykken, D. K. Kolchmeyer, S. I. Davis, N. Lauk, H. Neven, and M. Spiropulu, “Traversable wormhole dynamics on a quantum processor,” Nature 612 no. 7938, (2022) 51–55.
  76. B. Kobrin, T. Schuster, and N. Y. Yao, “Comment on” traversable wormhole dynamics on a quantum processor”,” arXiv preprint arXiv:2302.07897 (2023) .
  77. A. Castro and E. Verheijden, “Near-AdS2 Spectroscopy: Classifying the Spectrum of Operators and Interactions in N=2 4D Supergravity,” Universe 7 no. 12, (2021) 475, arXiv:2110.04208 [hep-th].
  78. M. Heydeman, L. V. Iliesiu, G. J. Turiaci, and W. Zhao, “The statistical mechanics of near-BPS black holes,” J. Phys. A 55 no. 1, (2022) 014004, arXiv:2011.01953 [hep-th].
  79. H. W. Lin, J. Maldacena, L. Rozenberg, and J. Shan, “Looking at supersymmetric black holes for a very long time,” SciPost Phys. 14 (2023) 128, arXiv:2207.00408 [hep-th].
  80. H. W. Lin, J. Maldacena, L. Rozenberg, and J. Shan, “Holography for people with no time,” SciPost Phys. 14 no. 6, (2023) 150, arXiv:2207.00407 [hep-th].
  81. F. Larsen and S. Paranjape, “Thermodynamics of near BPS black holes in AdS44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT and AdS77{}_{7}start_FLOATSUBSCRIPT 7 end_FLOATSUBSCRIPT,” JHEP 10 (2021) 198, arXiv:2010.04359 [hep-th].
  82. H. Geng, A. Karch, C. Perez-Pardavila, S. Raju, L. Randall, M. Riojas, and S. Shashi, “Inconsistency of islands in theories with long-range gravity,” JHEP 01 (2022) 182, arXiv:2107.03390 [hep-th].
  83. S. Ryu and T. Takayanagi, “Holographic derivation of entanglement entropy from AdS/CFT,” Phys. Rev. Lett. 96 (2006) 181602, arXiv:hep-th/0603001.
  84. Z. Fu and D. Marolf, “Bag-of-gold spacetimes, Euclidean wormholes, and inflation from domain walls in AdS/CFT,” JHEP 11 (2019) 040, arXiv:1909.02505 [hep-th].
  85. L. Battarra, G. Lavrelashvili, and J.-L. Lehners, “Negative Modes of Oscillating Instantons,” Phys. Rev. D 86 (2012) 124001, arXiv:1208.2182 [hep-th].
  86. B.-H. Lee, W. Lee, D. Ro, and D.-h. Yeom, “Oscillating Fubini instantons in curved space,” Phys. Rev. D 91 no. 12, (2015) 124044, arXiv:1409.3935 [hep-th].
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube