Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

SF-IDS: An Imbalanced Semi-Supervised Learning Framework for Fine-grained Intrusion Detection (2308.00542v1)

Published 1 Aug 2023 in cs.CR

Abstract: Deep learning-based fine-grained network intrusion detection systems (NIDS) enable different attacks to be responded to in a fast and targeted manner with the help of large-scale labels. However, the cost of labeling causes insufficient labeled samples. Also, the real fine-grained traffic shows a long-tailed distribution with great class imbalance. These two problems often appear simultaneously, posing serious challenges to fine-grained NIDS. In this work, we propose a novel semi-supervised fine-grained intrusion detection framework, SF-IDS, to achieve attack classification in the label-limited and highly class imbalanced case. We design a self-training backbone model called RI-1DCNN to boost the feature extraction by reconstructing the input samples into a multichannel image format. The uncertainty of the generated pseudo-labels is evaluated and used as a reference for pseudo-label filtering in combination with the prediction probability. To mitigate the effects of fine-grained class imbalance, we propose a hybrid loss function combining supervised contrastive loss and multi-weighted classification loss to obtain more compact intra-class features and clearer inter-class intervals. Experiments show that the proposed SF-IDS achieves 3.01% and 2.71% Marco-F1 improvement on two classical datasets with 1% labeled, respectively.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.