Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

RoseNNa: A performant, portable library for neural network inference with application to computational fluid dynamics (2307.16322v1)

Published 30 Jul 2023 in physics.flu-dyn and cs.LG

Abstract: The rise of neural network-based machine learning ushered in high-level libraries, including TensorFlow and PyTorch, to support their functionality. Computational fluid dynamics (CFD) researchers have benefited from this trend and produced powerful neural networks that promise shorter simulation times. For example, multilayer perceptrons (MLPs) and Long Short Term Memory (LSTM) recurrent-based (RNN) architectures can represent sub-grid physical effects, like turbulence. Implementing neural networks in CFD solvers is challenging because the programming languages used for machine learning and CFD are mostly non-overlapping, We present the roseNNa library, which bridges the gap between neural network inference and CFD. RoseNNa is a non-invasive, lightweight (1000 lines), and performant tool for neural network inference, with focus on the smaller networks used to augment PDE solvers, like those of CFD, which are typically written in C/C++ or Fortran. RoseNNa accomplishes this by automatically converting trained models from typical neural network training packages into a high-performance Fortran library with C and Fortran APIs. This reduces the effort needed to access trained neural networks and maintains performance in the PDE solvers that CFD researchers build and rely upon. Results show that RoseNNa reliably outperforms PyTorch (Python) and libtorch (C++) on MLPs and LSTM RNNs with less than 100 hidden layers and 100 neurons per layer, even after removing the overhead cost of API calls. Speedups range from a factor of about 10 and 2 faster than these established libraries for the smaller and larger ends of the neural network size ranges tested.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.