Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Physics-Guided, Physics-Informed, and Physics-Encoded Neural Networks in Scientific Computing (2211.07377v2)

Published 14 Nov 2022 in cs.LG

Abstract: Recent breakthroughs in computing power have made it feasible to use machine learning and deep learning to advance scientific computing in many fields, including fluid mechanics, solid mechanics, materials science, etc. Neural networks, in particular, play a central role in this hybridization. Due to their intrinsic architecture, conventional neural networks cannot be successfully trained and scoped when data is sparse, which is the case in many scientific and engineering domains. Nonetheless, neural networks provide a solid foundation to respect physics-driven or knowledge-based constraints during training. Generally speaking, there are three distinct neural network frameworks to enforce the underlying physics: (i) physics-guided neural networks (PgNNs), (ii) physics-informed neural networks (PiNNs), and (iii) physics-encoded neural networks (PeNNs). These methods provide distinct advantages for accelerating the numerical modeling of complex multiscale multi-physics phenomena. In addition, the recent developments in neural operators (NOs) add another dimension to these new simulation paradigms, especially when the real-time prediction of complex multi-physics systems is required. All these models also come with their own unique drawbacks and limitations that call for further fundamental research. This study aims to present a review of the four neural network frameworks (i.e., PgNNs, PiNNs, PeNNs, and NOs) used in scientific computing research. The state-of-the-art architectures and their applications are reviewed, limitations are discussed, and future research opportunities in terms of improving algorithms, considering causalities, expanding applications, and coupling scientific and deep learning solvers are presented. This critical review provides researchers and engineers with a solid starting point to comprehend how to integrate different layers of physics into neural networks.

Citations (39)

Summary

We haven't generated a summary for this paper yet.