Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Disentangled Discrete Representations (2307.14151v1)

Published 26 Jul 2023 in cs.LG and stat.ML

Abstract: Recent successes in image generation, model-based reinforcement learning, and text-to-image generation have demonstrated the empirical advantages of discrete latent representations, although the reasons behind their benefits remain unclear. We explore the relationship between discrete latent spaces and disentangled representations by replacing the standard Gaussian variational autoencoder (VAE) with a tailored categorical variational autoencoder. We show that the underlying grid structure of categorical distributions mitigates the problem of rotational invariance associated with multivariate Gaussian distributions, acting as an efficient inductive prior for disentangled representations. We provide both analytical and empirical findings that demonstrate the advantages of discrete VAEs for learning disentangled representations. Furthermore, we introduce the first unsupervised model selection strategy that favors disentangled representations.

Summary

We haven't generated a summary for this paper yet.