Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Strong generation for module categories (2307.13675v4)

Published 25 Jul 2023 in math.AC

Abstract: This article investigates strong generation within the module category of a commutative Noetherian ring. We establish a criterion for such rings to possess strong generators within their module category, addressing a question raised by Iyengar and Takahashi. As a consequence, this not only demonstrates that any Noetherian quasi-excellent ring of finite Krull dimension satisfies this criterion, but applies to rings outside this class. Additionally, we identify explicit strong generators within the module category for rings of prime characteristic, and establish upper bounds on Rouquier dimension in terms of classical numerical invariants for modules.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (43)
  1. Generators and dimensions of derived categories of modules. Commun. Algebra, 43(11):5003–5029, 2015.
  2. Ko Aoki. Quasiexcellence implies strong generation. J. Reine Angew. Math., 780:133–138, 2021.
  3. Homology of perfect complexes. Adv. Math., 223(5):1731–1781, 2010.
  4. Annihilation of cohomology, generation of modules and finiteness of derived dimension. Q. J. Math., 67(3):387–404, 2016.
  5. Hochschild dimensions of tilting objects. Int. Math. Res. Not., 2012(11):2607–2645, 2012.
  6. A category of kernels for equivariant factorizations. II: Further implications. J. Math. Pures Appl. (9), 102(4):702–757, 2014.
  7. High frobenius pushforwards generate the bounded derived category, 2023.
  8. Apostolos Beligiannis. Some ghost lemmas. Survey for The Representation Dimension of Artin Algebras, Bielefeld. Preprint, 2008.
  9. Alexey Bondal and Michel van den Bergh. Generators and representability of functors in commutative and noncommutative geometry. Mosc. Math. J., 3(1):1–36, 2003.
  10. Constructing nonproxy small test modules for the complete intersection property. Nagoya Mathematical Journal, 246:412–429, 2022.
  11. Cohen-Macaulay rings, volume 39 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1998.
  12. Ragnar-Olaf Buchweitz. Maximal Cohen-Macaulay modules and Tate cohomology. With appendices by Luchezar L. Avramov, Benjamin Briggs, Srikanth B. Iyengar and Janina C. Letz, volume 262 of Math. Surv. Monogr. Providence, RI: American Mathematical Society (AMS), 2021.
  13. Tilting on non-commutative rational projective curves. Math. Ann., 351(3):665–709, 2011.
  14. On the derived categories of gentle and skew-gentle algebras: homological algebra and matrix problems, 2017.
  15. J. Daniel Christensen. Ideals in triangulated categories: Phantoms, ghosts and skeleta. Adv. Math., 136(2):284–339, 1998.
  16. The radius of a subcategory of modules. Algebra Number Theory, 8(1):141–172, 2014.
  17. Classification of resolving subcategories and grade consistent functions. Int. Math. Res. Not., 2015(1):119–149, 2015.
  18. Upper bounds for dimensions of singularity categories. C. R., Math., Acad. Sci. Paris, 353(4):297–301, 2015.
  19. Ernst Dieterich. Reduction of isolated singularities. Comment. Math. Helv., 62:654–676, 1987.
  20. Finiteness in derived categories of local rings. Comment. Math. Helv., 81(2):383–432, 2006.
  21. Regular subcategories in bounded derived categories of affine schemes. Sb. Math., 209(12):1756–1782, 2018.
  22. Richard Fedder. F𝐹Fitalic_F-purity and rational singularity. Trans. Amer. Math. Soc., 278(2):461–480, 1983.
  23. Resolutions of toric subvarieties by line bundles and applications. arXiv preprint arXiv:2303.03763, 2023.
  24. Annihilation of cohomology and strong generation of module categories. Int. Math. Res. Not., 2016(2):499–535, 2016.
  25. Openness of the regular locus and generators for module categories. Acta Math. Vietnam., 44(1):207–212, 2019.
  26. The dimension of the category of maximal Cohen-Macaulay modules over Cohen-Macaulay local rings of dimension one. J. Algebra, 532:8–21, 2019.
  27. G. Maxwell Kelly. Chain maps inducing zero homology maps. Proc. Camb. Philos. Soc., 61:847–854, 1965.
  28. Henning Krause. Homological theory of representations, volume 195 of Camb. Stud. Adv. Math. Cambridge: Cambridge University Press, 2022.
  29. A note on thick subcategories of stable derived categories. Nagoya Math. J., 212:87–96, 2013.
  30. Ernst Kunz. On noetherian rings of characteristic p𝑝pitalic_p. Amer. J. Math., 98:999–1013, 1976.
  31. Pat Lank. Descent conditions for generation in derived categories, 2023.
  32. Janina C. Letz. Generation Time in Derived Categories. PhD thesis, The University of Utah, 2020.
  33. Janina C. Letz. Local to global principles for generation time over commutative Noetherian rings. Homology Homotopy Appl., 23(2):165–182, 2021.
  34. A partial converse ghost lemma for the derived category of a commutative Noetherian ring. Proc. Am. Math. Soc., 151(4):1459–1469, 2023.
  35. Hideyuki Matsumura. Commutative ring theory. Transl. from the Japanese by M. Reid., volume 8 of Camb. Stud. Adv. Math. Cambridge etc.: Cambridge University Press, paperback ed. edition, 1989.
  36. Generating the bounded derived category and perfect ghosts. Bull. Lond. Math. Soc., 44(2):285–298, 2012.
  37. Dmitri Orlov. Remarks on generators and dimensions of triangulated categories. Mosc. Math. J., 9(1):143–149, 2009.
  38. Josh Pollitz. The derived category of a locally complete intersection ring. Adv. Math., 354:18, 2019. Id/No 106752.
  39. Josh Pollitz. Cohomological supports over derived complete intersections and local rings. Math. Z., 299(3-4):2063–2101, 2021.
  40. Raphaël Rouquier. Dimensions of triangulated categories. J. K𝐾Kitalic_K-Theory, 1(2):193–256, 2008.
  41. Ryo Takahashi. Resolving subcategories whose finitely presented module categories are abelian. C. R., Math., Acad. Sci. Paris, 359(5):577–592, 2021.
  42. Ryo Takahashi. Dominant local rings and subcategory classification. Int. Math. Res. Not., 2023(9):7259–7318, 2023.
  43. Characterizing Cohen-Macaulay local rings by Frobenius maps. Proc. Am. Math. Soc., 132(11):3177–3187, 2004.
Citations (7)

Summary

We haven't generated a summary for this paper yet.