Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Molecular free energies, rates, and mechanisms from data-efficient path sampling simulations (2307.11240v2)

Published 20 Jul 2023 in physics.chem-ph, cond-mat.stat-mech, physics.comp-ph, and q-bio.BM

Abstract: Molecular dynamics is a powerful tool for studying the thermodynamics and kinetics of complex molecular events. However, these simulations can rarely sample the required time scales in practice. Transition path sampling overcomes this limitation by collecting unbiased trajectories capturing the relevant events. Moreover, the integration of machine learning can boost the sampling while simultaneously learning a quantitative representation of the mechanism. Still, the resulting trajectories are by construction non-Boltzmann-distributed, preventing the calculation of free energies and rates. We developed an algorithm to approximate the equilibrium path ensemble from machine learning-guided path sampling data. At the same time, our algorithm provides efficient sampling, the mechanism, free energy, and rates of rare molecular events at a very moderate computational cost. We tested the method on the folding of the mini-protein chignolin. Our algorithm is straightforward and data-efficient, opening the door to applications on many challenging molecular systems.

Citations (19)

Summary

We haven't generated a summary for this paper yet.