Repeated Observations for Classification
Abstract: We study the problem nonparametric classification with repeated observations. Let $\bX$ be the $d$ dimensional feature vector and let $Y$ denote the label taking values in ${1,\dots ,M}$. In contrast to usual setup with large sample size $n$ and relatively low dimension $d$, this paper deals with the situation, when instead of observing a single feature vector $\bX$ we are given $t$ repeated feature vectors $\bV_1,\dots ,\bV_t $. Some simple classification rules are presented such that the conditional error probabilities have exponential convergence rate of convergence as $t\to\infty$. In the analysis, we investigate particular models like robust detection by nominal densities, prototype classification, linear transformation, linear classification, scaling.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.