Fast Fourier-Chebyshev approach to real-space simulations of the Kubo formula (2307.09690v2)
Abstract: The Kubo formula is a cornerstone in our understanding of near-equilibrium transport phenomena. While conceptually elegant, the application of Kubo's linear-response theory to interesting problems is hindered by the need for algorithms that are accurate and scalable to large lattice sizes beyond one spatial dimension. Here, we propose a general framework to numerically study large systems, which combines the spectral accuracy of Chebyshev expansions with the efficiency of divide-and-conquer methods. We use the hybrid algorithm to calculate the two-terminal conductance and the bulk conductivity tensor of 2D lattice models with over $107$ sites. By efficiently sampling the microscopic information contained in billions of Chebyshev moments, the algorithm is able to accurately resolve the linear-response properties of complex systems in the presence of quenched disorder. Our results lay the groundwork for future studies of transport phenomena in previously inaccessible regimes.
- J. C. Wheeler and C. Blumstein, Modified moments for harmonic solids, Phys. Rev. B 6, 4380 (1972).
- H. Tal‐Ezer and R. Kosloff, An accurate and efficient scheme for propagating the time dependent Schrödinger equation, The Journal of Chemical Physics 81, 3967 (1984).
- G. Schubert, A. Weiße, and H. Fehske, Localization effects in quantum percolation, Phys. Rev. B 71, 045126 (2005).
- J. H. Pixley, D. A. Huse, and S. Das Sarma, Rare-region-induced avoided quantum criticality in disordered three-dimensional Dirac and Weyl semimetals, Phys. Rev. X 6, 021042 (2016).
- R. N. Silver and H. Röder, Calculation of densities of states and spectral functions by chebyshev recursion and maximum entropy, Phys. Rev. E 56, 4822 (1997).
- T. Iitaka and T. Ebisuzaki, Algorithm for linear response functions at finite temperatures: Application to esr spectrum of s=12𝑠12s=\frac{1}{2}italic_s = divide start_ARG 1 end_ARG start_ARG 2 end_ARG antiferromagnet cu benzoate, Phys. Rev. Lett. 90, 047203 (2003).
- A. Ferreira and E. R. Mucciolo, Critical delocalization of chiral zero energy modes in graphene, Phys. Rev. Lett. 115 (2015).
- G. D. Mahan, Many Particle Physics, Third Edition (Plenum, New York, 2000).
- H. U. Baranger and A. D. Stone, Electrical linear-response theory in an arbitrary magnetic field: A new Fermi-surface formation, Phys. Rev. B 40, 8169 (1989).
- F. D. M. Haldane, Berry curvature on the Fermi surface: Anomalous Hall effect as a topological Fermi-liquid property, Phys. Rev. Lett. 93, 206602 (2004).
- J. H. García, L. Covaci, and T. G. Rappoport, Real-space calculation of the conductivity tensor for disordered topological matter, Phys. Rev. Lett. 114, 116602 (2015).
- See Supplemental Material at [https://journals.aps.org/prl/] for the derivation of energy-space vectors in the Kubo-Bastin formulation, and for additional details on the simulations and the partitioning scheme employed to mitigate the memory cost.
- D. Jackson, On approximation by trigonometric sums and polynomials, Trans Am. Math, Soc. 13 (1912).
- km=(M−m+1)M+1cos(πmM+1)+sin(πmM+1)cot(πmM+1)subscript𝑘𝑚𝑀𝑚1𝑀1cos𝜋𝑚𝑀1sin𝜋𝑚𝑀1cot𝜋𝑚𝑀1k_{m}=\frac{(M-m+1)}{M+1}\textrm{cos}\left(\frac{\pi m}{M+1}\right)+\textrm{% sin}\left(\frac{\pi m}{M+1}\right)\textrm{cot}\left(\frac{\pi m}{M+1}\right)italic_k start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT = divide start_ARG ( italic_M - italic_m + 1 ) end_ARG start_ARG italic_M + 1 end_ARG cos ( divide start_ARG italic_π italic_m end_ARG start_ARG italic_M + 1 end_ARG ) + sin ( divide start_ARG italic_π italic_m end_ARG start_ARG italic_M + 1 end_ARG ) cot ( divide start_ARG italic_π italic_m end_ARG start_ARG italic_M + 1 end_ARG ).
- J. W. Cooley, P. Lewis, and P. Welch, The fast fourier transform and its applications, IEEE Trans on Education 12, 28 (1969).
- M. Frigo and S. Johnson, The design and implementation of FFTW3, Proceedings of the IEEE 93, 216 (2005).
- S. G. de Castro, A. Ferreira, and D. A. Bahamon, Efficient Chebyshev polynomial approach to quantum conductance calculations: Application to twisted bilayer graphene, Phys. Rev. B 107, 045418 (2023).
- J. C. Slater and G. F. Koster, Simplified LCAO method for the periodic potential problem, Phys. Rev. 94, 1498 (1954).
- D. A. Bahamon, G. Gómez-Santos, and T. Stauber, Emergent magnetic texture in driven twisted bilayer graphene, Nanoscale 12, 15383 (2020).
- P. Moon and M. Koshino, Energy spectrum and quantum hall effect in twisted bilayer graphene, Phys. Rev. B 85, 195458 (2012).
- B. Kramer and A. MacKinnon, Localization: theory and experiment, Reports on Progress in Physics 56, 1469 (1993).
- K. Slevin and T. Ohtsuki, Critical exponent for the quantum Hall transition, Phys. Rev. B 80, 041304 (2009).
- H. Obuse, I. A. Gruzberg, and F. Evers, Finite-size effects and irrelevant corrections to scaling near the integer quantum Hall transition, Phys. Rev. Lett. 109, 206804 (2012).
- K. Slevin and T. Ohtsuki, Irrelevant corrections at the quantum Hall transition, physica status solidi (RRL) – Rapid Research Letters n/a, 2300080.
- V. P. Gusynin and S. G. Sharapov, Unconventional integer quantum hall effect in graphene, Phys. Rev. Lett. 95, 146801 (2005).
- F. Evers and A. D. Mirlin, Anderson transitions, Rev. Mod. Phys. 80, 1355 (2008).
- E. J. Dresselhaus, B. Sbierski, and I. A. Gruzberg, Scaling collapse of longitudinal conductance near the integer quantum Hall transition, Phys. Rev. Lett. 129, 026801 (2022).
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.