Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Fast and stable rational approximation of generalized hypergeometric functions (2307.06221v1)

Published 12 Jul 2023 in math.NA and cs.NA

Abstract: Rational approximations of generalized hypergeometric functions ${}_pF_q$ of type $(n+k,k)$ are constructed by the Drummond and factorial Levin-type sequence transformations. We derive recurrence relations for these rational approximations that require $\mathcal{O}[\max{p,q}(n+k)]$ flops. These recurrence relations come in two forms: for the successive numerators and denominators; and, for an auxiliary rational sequence and the rational approximations themselves. Numerical evidence suggests that these recurrence relations are much more stable than the original formul\ae~for the Drummond and factorial Levin-type sequence transformations. Theoretical results on the placement of the poles of both transformations confirm the superiority of factorial Levin-type transformation over the Drummond transformation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (56)
  1. NIST Handbook of Mathematical Functions. Cambridge U. P., Cambridge, UK, 2010.
  2. M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions. Dover, New York, 1965.
  3. R. Forrey. Computing the hypergeometric function. J. Comput. Phys., 137:79–100, 1997.
  4. W. Becken and P. Schmelcher. The analytic continuation of the Gaussian hypergeometric function F12⁢(a,b;c;z)subscriptsubscript𝐹12𝑎𝑏𝑐𝑧{}_{2}{F}_{1}(a,b;c;z)start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT italic_F start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_a , italic_b ; italic_c ; italic_z ) for arbitrary parameters. J. Comp. Appl. Math., 126:449–478, 2000.
  5. K. Muller. Computing the confluent hypergeometric function, M⁢(a,b,x)𝑀𝑎𝑏𝑥M(a,b,x)italic_M ( italic_a , italic_b , italic_x ). Numerische Mathematik, 90:179–196, 2001.
  6. N. Michel and M. V. Stoitsov. Fast computation of the Gauss hypergeometric function with all its parameters complex with application to the Pöschl–Teller–Ginocchio potential wave functions. Comp. Phys. Commun., 178:535–551, 2008.
  7. Validated computation of certain hypergeometric functions. ACM Trans. Math. Software, 38:11:1–11:20, 2011.
  8. J. L. Willis. Acceleration of generalized hypergeometric functions through precise remainder asymptotics. Numer. Algor., 59:447–485, 2012.
  9. J. A. Doornik. Numerical evaluation of the Gauss hypergeometric function by power summations. Math. Comp., 84:1813–1833, 2015.
  10. Numerical methods for the computation of the confluent and Gauss hypergeometric functions. Numer. Algor., 74:821–866, 2017.
  11. Multidomain spectral method for the Gauss hypergeometric function. Numer. Algor., 2019.
  12. F. Johansson. Computing hypergeometric functions rigorously. ACM Trans. Math. Software, 45:30:1–30:26, 2019.
  13. W. Bühring. An analytic continuation of the hypergeometric series. SIAM J. Math. Anal., 18:884–889, 1987.
  14. W. Bühring. An analytic continuation formula for the generalized hypergeometric function. SIAM J. Math. Anal., 19:1249–1251, 1988.
  15. A. Iserles. A note on Padé approximations and generalized hypergeometric functions. BIT Numer. Math., 19:543–545, 1979.
  16. A. Sidi. A new method for deriving Padé approximants for some hypergeometric functions. J. Comp. Appl. Math., 7:37–40, 1981.
  17. J. E. Drummond. A formula for accelerating the convergence of a general series. Bull. Austral. Math. Soc., 6:69–74, 1972.
  18. D. Levin. Development of non-linear transformations for improving convergence of sequences. Int. J. Comput. Math., B3:371–388, 1973.
  19. D. Levin and A. Sidi. Two new classes of non-linear transformations for accelerating the convergence of infinite integrals and series. Appl. Math. Comput., 9:175–215, 1981.
  20. E. J. Weniger. Nonlinear sequence transformations for the acceleration of convergence and the summation of divergent series. Comput. Phys. Rep., 10:189–371, 1989.
  21. H. H. H. Homeier. Scalar Levin-type sequence transformations. J. Comp. Appl. Math., 122:81–147, 2000.
  22. A. Sidi. Practical Extrapolation Methods: Theory and Applications. Cambridge U. P., Cambridge, 2003.
  23. R. M. Slevinsky. https://github.com/JuliaMath/HypergeometricFunctions.jl. GitHub, 2018.
  24. Y. L. Luke. On economic representations of transcendental functions. J. Math. and Phys., 38:279–294, 1960.
  25. J. L. Fields. Rational approximations to generalized hypergeometric functions. Math. Comp., 19:606–624, 1965.
  26. R. Shelef. New numerical quadrature formulas for Laplace transform inversion by Bromwich’s integral. Master’s thesis, Technion–Israel Institute of Technology, 1987.
  27. On remainder estimates for Levin-type sequence transformations. Comput. Phys. Commun., 92:1–10, 1995.
  28. R. Borghi and E. J. Weniger. Convergence analysis of the summation of the factorially divergent Euler series by Padé approximants and the delta transformation. Appl. Num. Math., 94:149–178, 2015.
  29. The AAA algorithm for rational approximation. SIAM J. Sci. Comput., 40:A1494–A1522, 2018.
  30. W. G. Horner. A new method of solving numerical equations of all orders, by continuous approximation. Phil. Trans. Roy. Soc., 109:308–335, 1819.
  31. MPFR: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Software, 33:13:1–13:15, 2007.
  32. F. Johansson. Arb: efficient arbitrary-precision midpoint-radius interval arithmetic. IEEE Trans. Comp., 66:1281–1292, 2017.
  33. Acceleration of linear and logarithmic convergence. SIAM J. Numer. Anal., 16:223–240, 1979.
  34. A. Iserles. A First Course in the Numerical Analysis of Differential Equations. Cambridge Texts in Applied Mathematics. Cambridge University Press, second edition, 2009.
  35. D. St. P. Richards. Totally positive kernels, Pólya frequency functions, and generalized hypergeometric series. Linear Algebra Appl., 137/138:467–478, 1990.
  36. Pólya frequency sequences and real zeros of some F23subscriptsubscript𝐹23{}_{3}F_{2}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT italic_F start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT polynomials. J. Math. Anal. Appl., 332:1045–1055, 2007.
  37. Y. Li and R. M. Slevinsky. Fast and accurate algorithms for the computation of spherically symmetric nonlocal diffusion operators on lattices. J. Comp. Phys., 397:108870, 2019.
  38. H. L. Krall and O. Frink. A new class of orthogonal polynomials: The Bessel polynomials. Trans. Amer. Math. Soc., 65:100–115, 1949.
  39. K. Dočev. On the generalized Bessel polynomials. Bulgar. Akad. Nauk. Izv. Mat. Inst., 6:89–94, 1962.
  40. Zero-free parabolic regions for sequences of polynomials. SIAM J. Math. Anal., 7:344–357, 1976.
  41. J. Wimp. Recursion formulae for hypergeometric functions. Math. Comp., 22:363–373, 1968.
  42. C. Fox. The asymptotic expansion of generalized hypergeometric functions. Proc. Lond. Math. Soc., 27:389–400, 1928.
  43. E. M. Wright. The asymptotic expansion of the generalized hypergeometric function. J. London Math. Soc., 10:286–293, 1935.
  44. H. L. Gray and S. Wang. A new method for approximating improper integrals. SIAM J. Numer. Anal., 29:271–283, 1992.
  45. C. Brezinski and M. Redivo-Zaglia. Extensions of Drummond’s process for convergence acceleration. Appl. Num. Math., 60:1231–1241, 2010.
  46. M. Slevinsky and H. Safouhi. Numerical treatment of a twisted tail using extrapolation methods. Numer. Algor., 48:301–316, 2008.
  47. R. M. Slevinsky and H. Safouhi. The S𝑆Sitalic_S and G𝐺Gitalic_G transformations for computing three-center nuclear attraction integrals. Int. J. Quant. Chem., 109:1741–1747, 2009.
  48. R. M. Slevinsky and H. Safouhi. A recursive algorithm for the G𝐺Gitalic_G transformation and accurate computation of incomplete Bessel functions. Appl. Num. Math., 60:1411–1417, 2010.
  49. Computation of tail probability distributions via extrapolation methods and connection with rational and Padé approximants. SIAM J. Sci. Comput., 34:B65–B85, 2012.
  50. R. M. Slevinsky and H. Safouhi. A recursive algorithm for an efficient and accurate computation of incomplete Bessel functions. Numer. Algor., 92:973–983, 2023.
  51. M. Hochbruck and A. Ostermann. Exponential integrators. Acta Numerica, 19:209–286, 2010.
  52. Computing Aαsuperscript𝐴𝛼A^{\alpha}italic_A start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT, log⁡(A)𝐴\log({A})roman_log ( italic_A ) and related matrix functions by contour integrals. SIAM J. Numer. Anal., 46:2505–2523, 2008.
  53. G. Birkhoff and R. S. Varga. Discretization errors for well-set Cauchy problems. I. J. Math. and Phys., 44:1–23, 1965.
  54. B. L. Ehle. A𝐴{A}italic_A-stable methods and Padé approximations to the exponential. SIAM J. Math. Anal., 4:671–680, 1973.
  55. On the zeros and poles of Padé approximants to ezsuperscript𝑒𝑧e^{z}italic_e start_POSTSUPERSCRIPT italic_z end_POSTSUPERSCRIPT. Numer. Math., 25:1–14, 1975.
  56. C. Moler and C. Van Loan. Nineteen dubious ways to compute the exponential of a matrix. SIAM Rev., 20:801–836, 1978.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.