Fast and stable rational approximation of generalized hypergeometric functions (2307.06221v1)
Abstract: Rational approximations of generalized hypergeometric functions ${}_pF_q$ of type $(n+k,k)$ are constructed by the Drummond and factorial Levin-type sequence transformations. We derive recurrence relations for these rational approximations that require $\mathcal{O}[\max{p,q}(n+k)]$ flops. These recurrence relations come in two forms: for the successive numerators and denominators; and, for an auxiliary rational sequence and the rational approximations themselves. Numerical evidence suggests that these recurrence relations are much more stable than the original formul\ae~for the Drummond and factorial Levin-type sequence transformations. Theoretical results on the placement of the poles of both transformations confirm the superiority of factorial Levin-type transformation over the Drummond transformation.
- NIST Handbook of Mathematical Functions. Cambridge U. P., Cambridge, UK, 2010.
- M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions. Dover, New York, 1965.
- R. Forrey. Computing the hypergeometric function. J. Comput. Phys., 137:79–100, 1997.
- W. Becken and P. Schmelcher. The analytic continuation of the Gaussian hypergeometric function F12(a,b;c;z)subscriptsubscript𝐹12𝑎𝑏𝑐𝑧{}_{2}{F}_{1}(a,b;c;z)start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT italic_F start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_a , italic_b ; italic_c ; italic_z ) for arbitrary parameters. J. Comp. Appl. Math., 126:449–478, 2000.
- K. Muller. Computing the confluent hypergeometric function, M(a,b,x)𝑀𝑎𝑏𝑥M(a,b,x)italic_M ( italic_a , italic_b , italic_x ). Numerische Mathematik, 90:179–196, 2001.
- N. Michel and M. V. Stoitsov. Fast computation of the Gauss hypergeometric function with all its parameters complex with application to the Pöschl–Teller–Ginocchio potential wave functions. Comp. Phys. Commun., 178:535–551, 2008.
- Validated computation of certain hypergeometric functions. ACM Trans. Math. Software, 38:11:1–11:20, 2011.
- J. L. Willis. Acceleration of generalized hypergeometric functions through precise remainder asymptotics. Numer. Algor., 59:447–485, 2012.
- J. A. Doornik. Numerical evaluation of the Gauss hypergeometric function by power summations. Math. Comp., 84:1813–1833, 2015.
- Numerical methods for the computation of the confluent and Gauss hypergeometric functions. Numer. Algor., 74:821–866, 2017.
- Multidomain spectral method for the Gauss hypergeometric function. Numer. Algor., 2019.
- F. Johansson. Computing hypergeometric functions rigorously. ACM Trans. Math. Software, 45:30:1–30:26, 2019.
- W. Bühring. An analytic continuation of the hypergeometric series. SIAM J. Math. Anal., 18:884–889, 1987.
- W. Bühring. An analytic continuation formula for the generalized hypergeometric function. SIAM J. Math. Anal., 19:1249–1251, 1988.
- A. Iserles. A note on Padé approximations and generalized hypergeometric functions. BIT Numer. Math., 19:543–545, 1979.
- A. Sidi. A new method for deriving Padé approximants for some hypergeometric functions. J. Comp. Appl. Math., 7:37–40, 1981.
- J. E. Drummond. A formula for accelerating the convergence of a general series. Bull. Austral. Math. Soc., 6:69–74, 1972.
- D. Levin. Development of non-linear transformations for improving convergence of sequences. Int. J. Comput. Math., B3:371–388, 1973.
- D. Levin and A. Sidi. Two new classes of non-linear transformations for accelerating the convergence of infinite integrals and series. Appl. Math. Comput., 9:175–215, 1981.
- E. J. Weniger. Nonlinear sequence transformations for the acceleration of convergence and the summation of divergent series. Comput. Phys. Rep., 10:189–371, 1989.
- H. H. H. Homeier. Scalar Levin-type sequence transformations. J. Comp. Appl. Math., 122:81–147, 2000.
- A. Sidi. Practical Extrapolation Methods: Theory and Applications. Cambridge U. P., Cambridge, 2003.
- R. M. Slevinsky. https://github.com/JuliaMath/HypergeometricFunctions.jl. GitHub, 2018.
- Y. L. Luke. On economic representations of transcendental functions. J. Math. and Phys., 38:279–294, 1960.
- J. L. Fields. Rational approximations to generalized hypergeometric functions. Math. Comp., 19:606–624, 1965.
- R. Shelef. New numerical quadrature formulas for Laplace transform inversion by Bromwich’s integral. Master’s thesis, Technion–Israel Institute of Technology, 1987.
- On remainder estimates for Levin-type sequence transformations. Comput. Phys. Commun., 92:1–10, 1995.
- R. Borghi and E. J. Weniger. Convergence analysis of the summation of the factorially divergent Euler series by Padé approximants and the delta transformation. Appl. Num. Math., 94:149–178, 2015.
- The AAA algorithm for rational approximation. SIAM J. Sci. Comput., 40:A1494–A1522, 2018.
- W. G. Horner. A new method of solving numerical equations of all orders, by continuous approximation. Phil. Trans. Roy. Soc., 109:308–335, 1819.
- MPFR: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Software, 33:13:1–13:15, 2007.
- F. Johansson. Arb: efficient arbitrary-precision midpoint-radius interval arithmetic. IEEE Trans. Comp., 66:1281–1292, 2017.
- Acceleration of linear and logarithmic convergence. SIAM J. Numer. Anal., 16:223–240, 1979.
- A. Iserles. A First Course in the Numerical Analysis of Differential Equations. Cambridge Texts in Applied Mathematics. Cambridge University Press, second edition, 2009.
- D. St. P. Richards. Totally positive kernels, Pólya frequency functions, and generalized hypergeometric series. Linear Algebra Appl., 137/138:467–478, 1990.
- Pólya frequency sequences and real zeros of some F23subscriptsubscript𝐹23{}_{3}F_{2}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT italic_F start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT polynomials. J. Math. Anal. Appl., 332:1045–1055, 2007.
- Y. Li and R. M. Slevinsky. Fast and accurate algorithms for the computation of spherically symmetric nonlocal diffusion operators on lattices. J. Comp. Phys., 397:108870, 2019.
- H. L. Krall and O. Frink. A new class of orthogonal polynomials: The Bessel polynomials. Trans. Amer. Math. Soc., 65:100–115, 1949.
- K. Dočev. On the generalized Bessel polynomials. Bulgar. Akad. Nauk. Izv. Mat. Inst., 6:89–94, 1962.
- Zero-free parabolic regions for sequences of polynomials. SIAM J. Math. Anal., 7:344–357, 1976.
- J. Wimp. Recursion formulae for hypergeometric functions. Math. Comp., 22:363–373, 1968.
- C. Fox. The asymptotic expansion of generalized hypergeometric functions. Proc. Lond. Math. Soc., 27:389–400, 1928.
- E. M. Wright. The asymptotic expansion of the generalized hypergeometric function. J. London Math. Soc., 10:286–293, 1935.
- H. L. Gray and S. Wang. A new method for approximating improper integrals. SIAM J. Numer. Anal., 29:271–283, 1992.
- C. Brezinski and M. Redivo-Zaglia. Extensions of Drummond’s process for convergence acceleration. Appl. Num. Math., 60:1231–1241, 2010.
- M. Slevinsky and H. Safouhi. Numerical treatment of a twisted tail using extrapolation methods. Numer. Algor., 48:301–316, 2008.
- R. M. Slevinsky and H. Safouhi. The S𝑆Sitalic_S and G𝐺Gitalic_G transformations for computing three-center nuclear attraction integrals. Int. J. Quant. Chem., 109:1741–1747, 2009.
- R. M. Slevinsky and H. Safouhi. A recursive algorithm for the G𝐺Gitalic_G transformation and accurate computation of incomplete Bessel functions. Appl. Num. Math., 60:1411–1417, 2010.
- Computation of tail probability distributions via extrapolation methods and connection with rational and Padé approximants. SIAM J. Sci. Comput., 34:B65–B85, 2012.
- R. M. Slevinsky and H. Safouhi. A recursive algorithm for an efficient and accurate computation of incomplete Bessel functions. Numer. Algor., 92:973–983, 2023.
- M. Hochbruck and A. Ostermann. Exponential integrators. Acta Numerica, 19:209–286, 2010.
- Computing Aαsuperscript𝐴𝛼A^{\alpha}italic_A start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT, log(A)𝐴\log({A})roman_log ( italic_A ) and related matrix functions by contour integrals. SIAM J. Numer. Anal., 46:2505–2523, 2008.
- G. Birkhoff and R. S. Varga. Discretization errors for well-set Cauchy problems. I. J. Math. and Phys., 44:1–23, 1965.
- B. L. Ehle. A𝐴{A}italic_A-stable methods and Padé approximations to the exponential. SIAM J. Math. Anal., 4:671–680, 1973.
- On the zeros and poles of Padé approximants to ezsuperscript𝑒𝑧e^{z}italic_e start_POSTSUPERSCRIPT italic_z end_POSTSUPERSCRIPT. Numer. Math., 25:1–14, 1975.
- C. Moler and C. Van Loan. Nineteen dubious ways to compute the exponential of a matrix. SIAM Rev., 20:801–836, 1978.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.