Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

A recursive algorithm for an efficient and accurate computation of incomplete Bessel functions (2204.11197v1)

Published 24 Apr 2022 in math.NA and cs.NA

Abstract: In a previous work, we developed an algorithm for the computation of incomplete Bessel functions, which pose as a numerical challenge, based on the $G_{n}{(1)}$ transformation and Slevinsky-Safouhi formula for differentiation. In the present contribution, we improve this existing algorithm for incomplete Bessel functions by developing a recurrence relation for the numerator sequence and the denominator sequence whose ratio forms the sequence of approximations. By finding this recurrence relation, we reduce the complexity from ${\cal O}(n4)$ to ${\cal O}(n)$. We plot relative error showing that the algorithm is capable of extremely high accuracy for incomplete Bessel functions.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.