Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Action-State Dependent Dynamic Model Selection (2307.04754v2)

Published 7 Jul 2023 in cs.LG, q-fin.PM, stat.ME, and stat.ML

Abstract: A model among many may only be best under certain states of the world. Switching from a model to another can also be costly. Finding a procedure to dynamically choose a model in these circumstances requires to solve a complex estimation procedure and a dynamic programming problem. A Reinforcement learning algorithm is used to approximate and estimate from the data the optimal solution to this dynamic programming problem. The algorithm is shown to consistently estimate the optimal policy that may choose different models based on a set of covariates. A typical example is the one of switching between different portfolio models under rebalancing costs, using macroeconomic information. Using a set of macroeconomic variables and price data, an empirical application to the aforementioned portfolio problem shows superior performance to choosing the best portfolio model with hindsight.

Summary

We haven't generated a summary for this paper yet.