Parallel Tempered Metadynamics: Overcoming potential barriers without surfing or tunneling (2307.04742v2)
Abstract: At fine lattice spacings, Markov chain Monte Carlo simulations of QCD and other gauge theories with or without fermions are plagued by slow modes that give rise to large autocorrelation times. This can lead to simulation runs that are effectively stuck in one topological sector, a problem known as topological freezing. Here, we demonstrate that for a relevant set of parameters, Metadynamics can be used to unfreeze 4-dimensional SU(3) gauge theory. However, compared to local update algorithms and the Hybrid Monte Carlo algorithm, the computational overhead is significant in pure gauge theory, and the required reweighting procedure may considerably reduce the effective sample size. To deal with the latter problem, we propose modifications to the Metadynamics bias potential and the combination of Metadynamics with parallel tempering. We test the new algorithm in 4-dimensional SU(3) gauge theory and find that it can achieve topological unfreezing without compromising the effective sample size, thereby reducing the autocorrelation times of topological observables by at least two orders of magnitude compared to conventional update algorithms. Additionally, we observe significantly improved scaling of autocorrelation times with the lattice spacing in 2-dimensional U(1) gauge theory.
- Y. Aoki et al. (Flavour Lattice Averaging Group (FLAG)), FLAG Review 2021, Eur. Phys. J. C 82, 869 (2022), arXiv:2111.09849 [hep-lat] .
- M. Creutz, Confinement and the critical dimensionality of space-time, Phys. Rev. Lett. 43, 553 (1979).
- M. Creutz, Monte Carlo Study of Quantized SU(2) Gauge Theory, Phys. Rev. D 21, 2308 (1980).
- K. Fabricius and O. Haan, Heat Bath Method for the Twisted Eguchi-Kawai Model, Phys. Lett. B 143, 459 (1984).
- A. D. Kennedy and B. J. Pendleton, Improved Heat Bath Method for Monte Carlo Calculations in Lattice Gauge Theories, Phys. Lett. B 156, 393 (1985).
- N. Cabibbo and E. Marinari, A New Method for Updating SU(N) Matrices in Computer Simulations of Gauge Theories, Phys. Lett. B 119, 387 (1982).
- S. L. Adler, An Overrelaxation Method for the Monte Carlo Evaluation of the Partition Function for Multiquadratic Actions, Phys. Rev. D 23, 2901 (1981).
- M. Creutz, Overrelaxation and Monte Carlo Simulation, Phys. Rev. D 36, 515 (1987).
- F. R. Brown and T. J. Woch, Overrelaxed Heat Bath and Metropolis Algorithms for Accelerating Pure Gauge Monte Carlo Calculations, Phys. Rev. Lett. 58, 2394 (1987).
- K. Orginos (RBC), Chiral properties of domain wall fermions with improved gauge actions, Nucl. Phys. B Proc. Suppl. 106, 721 (2002), arXiv:hep-lat/0110074 .
- T. A. DeGrand, A. Hasenfratz, and T. G. Kovacs, Improving the chiral properties of lattice fermions, Phys. Rev. D 67, 054501 (2003), arXiv:hep-lat/0211006 .
- J. Noaki (RBC), Calculation of weak matrix elements in domain wall QCD with the DBW2 gauge action, Nucl. Phys. B Proc. Suppl. 119, 362 (2003), arXiv:hep-lat/0211013 .
- Y. Aoki et al., The Kaon B-parameter from quenched domain-wall QCD, Phys. Rev. D 73, 094507 (2006), arXiv:hep-lat/0508011 .
- L. Del Debbio, H. Panagopoulos, and E. Vicari, theta dependence of SU(N) gauge theories, JHEP 08, 044, arXiv:hep-th/0204125 .
- L. Del Debbio, G. M. Manca, and E. Vicari, Critical slowing down of topological modes, Phys. Lett. B 594, 315 (2004), arXiv:hep-lat/0403001 .
- S. Schaefer, R. Sommer, and F. Virotta (ALPHA), Critical slowing down and error analysis in lattice QCD simulations, Nucl. Phys. B 845, 93 (2011), arXiv:1009.5228 [hep-lat] .
- C. Bernard and D. Toussaint (MILC), Effects of nonequilibrated topological charge distributions on pseudoscalar meson masses and decay constants, Phys. Rev. D 97, 074502 (2018), arXiv:1707.05430 [hep-lat] .
- S. Borsanyi et al., Leading hadronic contribution to the muon magnetic moment from lattice QCD, Nature 593, 51 (2021), arXiv:2002.12347 [hep-lat] .
- M. Lüscher, Stochastic locality and master-field simulations of very large lattices, EPJ Web Conf. 175, 01002 (2018), arXiv:1707.09758 [hep-lat] .
- M. Luscher and S. Schaefer, Lattice QCD without topology barriers, JHEP 07, 036, arXiv:1105.4749 [hep-lat] .
- M. Hasenbusch, Fighting topological freezing in the two-dimensional CPN-1 model, Phys. Rev. D 96, 054504 (2017), arXiv:1706.04443 [hep-lat] .
- W. Detmold and M. G. Endres, Multiscale Monte Carlo equilibration: Two-color QCD with two fermion flavors, Phys. Rev. D 94, 114502 (2016), arXiv:1605.09650 [hep-lat] .
- W. Detmold and M. G. Endres, Scaling properties of multiscale equilibration, Phys. Rev. D 97, 074507 (2018), arXiv:1801.06132 [hep-lat] .
- F. Fucito and S. Solomon, Does standard monte carlo give justice to instantons?, Physics Letters B 134, 230 (1984).
- J. Smit and J. C. Vink, Topological Charge and Fermions in the Two-dimensional Lattice U(1) Model. 1. Staggered Fermions, Nucl. Phys. B 303, 36 (1988).
- H. Dilger, Screening in the lattice Schwinger model, Phys. Lett. B 294, 263 (1992).
- H. Dilger, Topological zero modes in Monte Carlo simulations, Int. J. Mod. Phys. C 6, 123 (1995), arXiv:hep-lat/9408017 .
- S. Durr, Physics of η′superscript𝜂′\eta^{\prime}italic_η start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT with rooted staggered quarks, Phys. Rev. D 85, 114503 (2012), arXiv:1203.2560 [hep-lat] .
- A. Laio, G. Martinelli, and F. Sanfilippo, Metadynamics surfing on topology barriers: the CPN−1𝐶superscript𝑃𝑁1CP^{N-1}italic_C italic_P start_POSTSUPERSCRIPT italic_N - 1 end_POSTSUPERSCRIPT case, JHEP 07, 089, arXiv:1508.07270 [hep-lat] .
- C. Bonati, The topological properties of QCD at high temperature: problems and perspectives, EPJ Web Conf. 175, 01011 (2018), arXiv:1710.06410 [hep-lat] .
- S. Duane and B. J. Pendleton, GAUGE INVARIANT FOURIER ACCELERATION, Phys. Lett. B 206, 101 (1988).
- M. Luscher, Trivializing maps, the Wilson flow and the HMC algorithm, Commun. Math. Phys. 293, 899 (2010), arXiv:0907.5491 [hep-lat] .
- J. Finkenrath, Tackling critical slowing down using global correction steps with equivariant flows: the case of the Schwinger model, (2022), arXiv:2201.02216 [hep-lat] .
- M. S. Albergo, G. Kanwar, and P. E. Shanahan, Flow-based generative models for Markov chain Monte Carlo in lattice field theory, Phys. Rev. D 100, 034515 (2019), arXiv:1904.12072 [hep-lat] .
- L. Del Debbio, J. M. Rossney, and M. Wilson, Efficient modeling of trivializing maps for lattice ϕitalic-ϕ\phiitalic_ϕ4 theory using normalizing flows: A first look at scalability, Phys. Rev. D 104, 094507 (2021), arXiv:2105.12481 [hep-lat] .
- J. M. Pawlowski and J. M. Urban, Flow-based density of states for complex actions, (2022), arXiv:2203.01243 [hep-lat] .
- R. Abbott et al., Gauge-equivariant flow models for sampling in lattice field theories with pseudofermions, (2022a), arXiv:2207.08945 [hep-lat] .
- R. Abbott et al., Sampling QCD field configurations with gauge-equivariant flow models, in 39th International Symposium on Lattice Field Theory (2022) arXiv:2208.03832 [hep-lat] .
- A. Singha, D. Chakrabarti, and V. Arora, Conditional Normalizing flow for Monte Carlo sampling in lattice scalar field theory, (2022), arXiv:2207.00980 [hep-lat] .
- R. Abbott et al., Aspects of scaling and scalability for flow-based sampling of lattice QCD, (2022c), arXiv:2211.07541 [hep-lat] .
- J. Komijani and M. K. Marinkovic, Generative models for scalar field theories: how to deal with poor scaling?, PoS LATTICE2022, 019 (2023), arXiv:2301.01504 [hep-lat] .
- R. Abbott et al., Normalizing flows for lattice gauge theory in arbitrary space-time dimension, (2023), arXiv:2305.02402 [hep-lat] .
- R. H. Swendsen and J.-S. Wang, Replica monte carlo simulation of spin-glasses, Phys. Rev. Lett. 57, 2607 (1986).
- A. Laio and M. Parrinello, Escaping free-energy minima, Proceedings of the National Academy of Sciences 99, 12562–12566 (2002).
- B. A. Berg and T. Neuhaus, Multicanonical ensemble: A new approach to simulate first-order phase transitions, Phys. Rev. Lett. 68, 9 (1992).
- G. Bussi, A. Laio, and M. Parrinello, Equilibrium free energies from nonequilibrium metadynamics, Phys. Rev. Lett. 96, 090601 (2006).
- T. M. Schäfer and G. Settanni, Data reweighting in metadynamics simulations, Journal of Chemical Theory and Computation 16, 2042 (2020), pMID: 32192340.
- K. G. Wilson, Confinement of Quarks, Phys. Rev. D 10, 2445 (1974).
- T. Takaishi, Heavy quark potential and effective actions on blocked configurations, Phys. Rev. D 54, 1050 (1996).
- M. Luscher and P. Weisz, On-Shell Improved Lattice Gauge Theories, Commun. Math. Phys. 97, 59 (1985), [Erratum: Commun.Math.Phys. 98, 433 (1985)].
- C. Morningstar and M. J. Peardon, Analytic smearing of SU(3) link variables in lattice QCD, Phys. Rev. D 69, 054501 (2004), arXiv:hep-lat/0311018 .
- S. Capitani, S. Durr, and C. Hoelbling, Rationale for UV-filtered clover fermions, JHEP 11, 028, arXiv:hep-lat/0607006 .
- Y. Nagai and A. Tomiya, Gauge covariant neural network for 4 dimensional non-abelian gauge theory, (2021), arXiv:2103.11965 [hep-lat] .
- S. Necco and R. Sommer, The N(f) = 0 heavy quark potential from short to intermediate distances, Nucl. Phys. B 622, 328 (2002), arXiv:hep-lat/0108008 .
- U. Wolff (ALPHA), Monte Carlo errors with less errors, Comput. Phys. Commun. 156, 143 (2004), [Erratum: Comput.Phys.Commun. 176, 383 (2007)], arXiv:hep-lat/0306017 .
- K. Hashimoto and T. Izubuchi (RBC), Static anti-Q - Q potential from N(f) = 2 dynamical domain-wall QCD, Nucl. Phys. B Proc. Suppl. 140, 341 (2005), arXiv:hep-lat/0409101 .
- S. Necco, Universality and scaling behavior of RG gauge actions, Nucl. Phys. B 683, 137 (2004), arXiv:hep-lat/0309017 .
- M. Lüscher, Properties and uses of the Wilson flow in lattice QCD, JHEP 08, 071, [Erratum: JHEP 03, 092 (2014)], arXiv:1006.4518 [hep-lat] .
- S. Borsanyi et al. (BMW), High-precision scale setting in lattice QCD, JHEP 09, 010, arXiv:1203.4469 [hep-lat] .
- R. Sommer, Scale setting in lattice QCD, PoS LATTICE2013, 015 (2014), arXiv:1401.3270 [hep-lat] .
- J. C. Sexton and D. H. Weingarten, Hamiltonian evolution for the hybrid Monte Carlo algorithm, Nucl. Phys. B 380, 665 (1992).
- A. Barducci, G. Bussi, and M. Parrinello, Well-tempered metadynamics: A smoothly converging and tunable free-energy method, Phys. Rev. Lett. 100, 020603 (2008).
- J. Smit and J. C. Vink, Remnants of the Index Theorem on the Lattice, Nucl. Phys. B 286, 485 (1987).
- P. T. Jahn, The Topological Susceptibility of QCD at High Temperatures, Ph.D. thesis, Darmstadt, Tech. Hochsch. (2019).
- T. G. Kovacs, E. T. Tomboulis, and Z. Schram, Topology on the lattice: 2-d Yang-Mills theories with a theta term, Nucl. Phys. B 454, 45 (1995), arXiv:hep-th/9505005 .
- S. Elser, The Local bosonic algorithm applied to the massive Schwinger model, Other thesis (2001), arXiv:hep-lat/0103035 .
- C. Bonati and P. Rossi, Topological susceptibility of two-dimensional U(N)𝑈𝑁U(N)italic_U ( italic_N ) gauge theories, Phys. Rev. D 99, 054503 (2019), arXiv:1901.09830 [hep-lat] .
- R. Vautard and M. Ghil, Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series, Physica D: Nonlinear Phenomena 35, 395 (1989).
- P. Marenzoni, L. Pugnetti, and P. Rossi, Measure of autocorrelation times of local hybrid Monte Carlo algorithm for lattice QCD, Phys. Lett. B 315, 152 (1993), arXiv:hep-lat/9306013 .
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.