Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MAP-NBV: Multi-agent Prediction-guided Next-Best-View Planning for Active 3D Object Reconstruction (2307.04004v3)

Published 8 Jul 2023 in cs.RO and cs.MA

Abstract: Next-Best View (NBV) planning is a long-standing problem of determining where to obtain the next best view of an object from, by a robot that is viewing the object. There are a number of methods for choosing NBV based on the observed part of the object. In this paper, we investigate how predicting the unobserved part helps with the efficiency of reconstructing the object. We present, Multi-Agent Prediction-Guided NBV (MAP-NBV), a decentralized coordination algorithm for active 3D reconstruction with multi-agent systems. Prediction-based approaches have shown great improvement in active perception tasks by learning the cues about structures in the environment from data. However, these methods primarily focus on single-agent systems. We design a decentralized next-best-view approach that utilizes geometric measures over the predictions and jointly optimizes the information gain and control effort for efficient collaborative 3D reconstruction of the object. Our method achieves 19% improvement over the non-predictive multi-agent approach in simulations using AirSim and ShapeNet. We make our code publicly available through our project website: http://raaslab.org/projects/MAPNBV/.

Citations (2)

Summary

We haven't generated a summary for this paper yet.