Papers
Topics
Authors
Recent
Search
2000 character limit reached

Gibbs measures for a Hard-Core model with a countable set of states

Published 7 Jul 2023 in math.PR, math-ph, and math.MP | (2307.03432v1)

Abstract: In this paper, we focus on studying non-probability Gibbs measures for a Hard Core (HC) model on a Cayley tree of order $k\geq 2$, where the set of integers $\mathbb Z$ is the set of spin values. It is well-known that each Gibbs measure, whether it be a gradient or non-probability measure, of this model corresponds to a boundary law. A boundary law can be thought of as an infinite-dimensional vector function defined at the vertices of the Cayley tree, which satisfies a nonlinear functional equation. Furthermore, every normalisable boundary law corresponds to a Gibbs measure. However, a non-normalisable boundary law can define gradient or non-probability Gibbs measures. In this paper, we investigate the conditions for uniqueness and non-uniqueness of translation-invariant and periodic non-probability Gibbs measures for the HC-model on a Cayley tree of any order $k\geq 2$.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.