Papers
Topics
Authors
Recent
Search
2000 character limit reached

On Invariance, Equivariance, Correlation and Convolution of Spherical Harmonic Representations for Scalar and Vectorial Data

Published 6 Jul 2023 in cs.LG and cs.AI | (2307.03311v1)

Abstract: The mathematical representations of data in the Spherical Harmonic (SH) domain has recently regained increasing interest in the machine learning community. This technical report gives an in-depth introduction to the theoretical foundation and practical implementation of SH representations, summarizing works on rotation invariant and equivariant features, as well as convolutions and exact correlations of signals on spheres. In extension, these methods are then generalized from scalar SH representations to Vectorial Harmonics (VH), providing the same capabilities for 3d vector fields on spheres

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.