Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Label-Synchronous Neural Transducer for End-to-End ASR (2307.03088v2)

Published 6 Jul 2023 in eess.AS

Abstract: Neural transducers provide a natural way of streaming ASR. However, they augment output sequences with blank tokens which leads to challenges for domain adaptation using text data. This paper proposes a label-synchronous neural transducer (LS-Transducer), which extracts a label-level encoder representation before combining it with the prediction network output. Hence blank tokens are no longer needed and the prediction network can be easily adapted using text data. An Auto-regressive Integrate-and-Fire (AIF) mechanism is proposed to generate the label-level encoder representation while retaining the streaming property. In addition, a streaming joint decoding method is designed to improve ASR accuracy. Experiments show that compared to standard neural transducers, the proposed LS-Transducer gave a 10% relative WER reduction (WERR) for intra-domain Librispeech-100h data, as well as 17% and 19% relative WERRs on cross-domain TED-LIUM2 and AESRC2020 data with an adapted prediction network.

Citations (7)

Summary

We haven't generated a summary for this paper yet.