Papers
Topics
Authors
Recent
2000 character limit reached

Sensitivity to anisotropic stochastic gravitational-wave background with space-borne networks

Published 4 Jul 2023 in gr-qc, astro-ph.CO, and astro-ph.IM | (2307.01541v2)

Abstract: Single gravitational-wave detectors face inherent limitations in detecting the anisotropy of the stochastic background. In this work, we explore the sensitivity to anisotropic backgrounds with a network of space-borne detectors. We find that the separation between detectors plays an important role in determining the sensitivity. For the first time, we observe as large as three orders of magnitude enhancement in detection sensitivity for the multipoles with $l=5$ and 6, compared to coinciding detectors. Coordinating and optimizing the separation between two space-borne detectors can significantly enhance the network's sensitivity to the multipole components of the stochastic background. For the TianQin + LISA network, benefiting from detector separation, it is possible to achieve sensitivity levels of 2-3 orders of magnitude better than using TianQin or LISA detector alone. These findings pave the way to uncover the underlying physics of anisotropy through gravitational-wave detections.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. N. Christensen, Phys. Rev. D 46, 5250 (1992).
  2. E. E. Flanagan, Phys. Rev. D 48, 2389 (1993), arXiv:astro-ph/9305029 .
  3. B. Allen and J. D. Romano, Phys. Rev. D 59, 102001 (1999), arXiv:gr-qc/9710117 .
  4. G. Agazie et al. (NANOGrav), Astrophys. J. Lett. 951 (2023), 10.3847/2041-8213/acdac6, arXiv:2306.16213 [astro-ph.HE] .
  5. H. Xu et al., Res. Astron. Astrophys. 23, 075024 (2023), arXiv:2306.16216 [astro-ph.HE] .
  6. J. Antoniadis et al.,   (2023), arXiv:2306.16214 [astro-ph.HE] .
  7. D. J. Reardon et al., Astrophys. J. Lett. 951 (2023), 10.3847/2041-8213/acdd02, arXiv:2306.16215 [astro-ph.HE] .
  8. N. Seto, Phys. Rev. D 102, 123547 (2020), arXiv:2010.06877 [gr-qc] .
  9. B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. Lett. 120, 091101 (2018), arXiv:1710.05837 [gr-qc] .
  10. B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. D 100, 061101 (2019), arXiv:1903.02886 [gr-qc] .
  11. S. Profumo and F. Yang,   (2023), arXiv:2306.07454 [astro-ph.CO] .
  12. J. Luo et al. (TianQin), Class. Quant. Grav. 33, 035010 (2016), arXiv:1512.02076 [astro-ph.IM] .
  13. P. Amaro-Seoane et al. (LISA),   (2017), arXiv:1702.00786 [astro-ph.IM] .
  14. W.-R. Hu and Y.-L. Wu, Natl. Sci. Rev. 4, 685 (2017).
  15. M. Tinto and J. W. Armstrong, Phys. Rev. D 59, 102003 (1999).
  16. M. Tinto and S. V. Dhurandhar, Living Rev. Rel. 24, 1 (2021).
  17. C. J. Hogan and P. L. Bender, Phys. Rev. D 64, 062002 (2001), arXiv:astro-ph/0104266 .
  18. B. Allen, in Les Houches School of Physics: Astrophysical Sources of Gravitational Radiation (1996) pp. 373–417, arXiv:gr-qc/9604033 .
  19. B. Allen and A. C. Ottewill, Phys. Rev. D 56, 545 (1997), arXiv:gr-qc/9607068 .
  20. H. Kudoh and A. Taruya, Phys. Rev. D 71, 024025 (2005), arXiv:gr-qc/0411017 .
  21. N. Bartolo et al. (LISA Cosmology Working Group), JCAP 11, 009 (2022), arXiv:2201.08782 [astro-ph.CO] .
  22. E. Thrane and J. D. Romano, Phys. Rev. D 88, 124032 (2013), arXiv:1310.5300 [astro-ph.IM] .
  23. J. D. Romano and N. J. Cornish, Living Rev. Rel. 20, 2 (2017), arXiv:1608.06889 [gr-qc] .
  24. N. J. Cornish and S. L. Larson, Class. Quant. Grav. 18, 3473 (2001), arXiv:gr-qc/0103075 .
  25. N. J. Cornish, Phys. Rev. D 65, 022004 (2002), arXiv:gr-qc/0106058 .
  26. J. Mei et al. (TianQin), PTEP 2021, 05A107 (2021), arXiv:2008.10332 [gr-qc] .
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.