Weak and parabolic solutions of advection-diffusion equations with rough velocity field
Abstract: We study the Cauchy problem for the advection-diffusion equation $\partial_t u + \mathrm{div} (u b ) = \Delta u$ associated with a merely integrable divergence-free vector field $b$ defined on the torus. We discuss existence, regularity and uniqueness results for distributional and parabolic solutions, in different regimes of integrability both for the vector field and for the initial datum. We offer an up-to-date picture of the available results scattered in the literature, and we include some original proofs. We also propose some open problems, motivated by very recent results which show ill-posedness of the equation in certain regimes of integrability via convex integration schemes.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.