Papers
Topics
Authors
Recent
Search
2000 character limit reached

Weak and parabolic solutions of advection-diffusion equations with rough velocity field

Published 27 Jun 2023 in math.AP | (2306.15529v1)

Abstract: We study the Cauchy problem for the advection-diffusion equation $\partial_t u + \mathrm{div} (u b ) = \Delta u$ associated with a merely integrable divergence-free vector field $b$ defined on the torus. We discuss existence, regularity and uniqueness results for distributional and parabolic solutions, in different regimes of integrability both for the vector field and for the initial datum. We offer an up-to-date picture of the available results scattered in the literature, and we include some original proofs. We also propose some open problems, motivated by very recent results which show ill-posedness of the equation in certain regimes of integrability via convex integration schemes.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.