Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-uniqueness of parabolic solutions for advection-diffusion equation (2410.03308v2)

Published 4 Oct 2024 in math.AP

Abstract: We present a novel example of a divergence-free velocity field $b \in L\infty ((0,1); Lp (\mathbb{T}2))$ for $p<2$ arbitrary but fixed which leads to non-unique solutions of advection-diffusion in the class $L\infty_{t,x} \cap L2_t H1_x$ while satisfying the local energy inequality. This result complements the known uniqueness result of bounded solutions for divergence-free and $L2_{t,x}$ integrable velocity fields. Additionally, we also prove the necessity of time integrability of the velocity field for the uniqueness result. More precisely, we construct another divergence-free velocity field $b \in Lp ((0,1); L\infty (\mathbb{T}2))$, for $p< 2$ fixed, but arbitrary, with non-unique aforementioned solutions. Our contribution closes the gap between the regime of uniqueness and non-uniqueness in this context. Previously, it was shown with the convex integration technique that for $d\geq 3$ divergence-free velocity fields $ b \in L\infty((0,1);Lp (\mathbb{T}d))$ with $p < \frac{2d}{d+2}$ could lead to non-unique solutions in the space $L\infty_t L{\frac{2d}{d-2}}_x \cap L2_t H1_x$. Our proof is based on a stochastic Lagrangian approach and does not rely on convex integration.

Summary

We haven't generated a summary for this paper yet.