Papers
Topics
Authors
Recent
Search
2000 character limit reached

FETNet: Feature Erasing and Transferring Network for Scene Text Removal

Published 16 Jun 2023 in cs.CV | (2306.09593v1)

Abstract: The scene text removal (STR) task aims to remove text regions and recover the background smoothly in images for private information protection. Most existing STR methods adopt encoder-decoder-based CNNs, with direct copies of the features in the skip connections. However, the encoded features contain both text texture and structure information. The insufficient utilization of text features hampers the performance of background reconstruction in text removal regions. To tackle these problems, we propose a novel Feature Erasing and Transferring (FET) mechanism to reconfigure the encoded features for STR in this paper. In FET, a Feature Erasing Module (FEM) is designed to erase text features. An attention module is responsible for generating the feature similarity guidance. The Feature Transferring Module (FTM) is introduced to transfer the corresponding features in different layers based on the attention guidance. With this mechanism, a one-stage, end-to-end trainable network called FETNet is constructed for scene text removal. In addition, to facilitate research on both scene text removal and segmentation tasks, we introduce a novel dataset, Flickr-ST, with multi-category annotations. A sufficient number of experiments and ablation studies are conducted on the public datasets and Flickr-ST. Our proposed method achieves state-of-the-art performance using most metrics, with remarkably higher quality scene text removal results. The source code of our work is available at: \href{https://github.com/GuangtaoLyu/FETNet}{https://github.com/GuangtaoLyu/FETNet.

Citations (11)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.