Papers
Topics
Authors
Recent
2000 character limit reached

Fast Algorithms for Directed Graph Partitioning Using Flows and Reweighted Eigenvalues

Published 15 Jun 2023 in cs.DS, cs.DM, cs.LG, and math.CO | (2306.09128v1)

Abstract: We consider a new semidefinite programming relaxation for directed edge expansion, which is obtained by adding triangle inequalities to the reweighted eigenvalue formulation. Applying the matrix multiplicative weight update method to this relaxation, we derive almost linear-time algorithms to achieve $O(\sqrt{\log{n}})$-approximation and Cheeger-type guarantee for directed edge expansion, as well as an improved cut-matching game for directed graphs. This provides a primal-dual flow-based framework to obtain the best known algorithms for directed graph partitioning. The same approach also works for vertex expansion and for hypergraphs, providing a simple and unified approach to achieve the best known results for different expansion problems and different algorithmic techniques.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.