Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 226 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

$T\bar{T}$-deformed Entanglement Entropy for Integrable Quantum Field Theory (2306.07784v2)

Published 13 Jun 2023 in hep-th and nlin.SI

Abstract: We calculate the $T\bar{T}$-deformed entanglement entropy for integrable quantum field theories (IQFTs) using the form factor bootstrap approach. We solve the form factor bootstrap axioms for the branch-point twist fields and obtain the deformed form factors. Using these form factors, we compute the deformed von Neuman entropy up to two particle contributions. The solution of the form factor axioms is not unique. We find that for the simplest solution of the bootstrap axioms, the UV limit of the entanglement entropy takes the same form as the undeformed one, but the effective central charge is deformed. For solutions with additional CDD-like factors, we can have different behaviors. The IR corrections, which only depends on the particle spectrum is untouched.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (100)
  1. F. A. Smirnov and A. B. Zamolodchikov, “On space of integrable quantum field theories,” Nucl. Phys. B 915 (2017) 363–383, arXiv:1608.05499 [hep-th].
  2. A. Cavaglià, S. Negro, I. M. Szécsényi, and R. Tateo, “T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG-deformed 2D Quantum Field Theories,” JHEP 10 (2016) 112, arXiv:1608.05534 [hep-th].
  3. S. Dubovsky, V. Gorbenko, and M. Mirbabayi, “Asymptotic fragility, near AdS22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT holography and T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG,” JHEP 09 (2017) 136, arXiv:1706.06604 [hep-th].
  4. S. Dubovsky, V. Gorbenko, and G. Hernández-Chifflet, “T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG partition function from topological gravity,” JHEP 09 (2018) 158, arXiv:1805.07386 [hep-th].
  5. J. Cardy, “The T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformation of quantum field theory as random geometry,” JHEP 10 (2018) 186, arXiv:1801.06895 [hep-th].
  6. E. A. Coleman, J. Aguilera-Damia, D. Z. Freedman, and R. M. Soni, “T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG -deformed actions and (1,1) supersymmetry,” JHEP 10 (2019) 080, arXiv:1906.05439 [hep-th].
  7. A. J. Tolley, “T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformations, massive gravity and non-critical strings,” JHEP 06 (2020) 050, arXiv:1911.06142 [hep-th].
  8. N. Callebaut, J. Kruthoff, and H. Verlinde, “T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformed CFT as a non-critical string,” JHEP 04 (2020) 084, arXiv:1910.13578 [hep-th].
  9. N. Benjamin, S. Collier, J. Kruthoff, H. Verlinde, and M. Zhang, “S-duality in T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG-deformed CFT,” JHEP 05 (2023) 140, arXiv:2302.09677 [hep-th].
  10. M. Baggio and A. Sfondrini, “Strings on NS-NS Backgrounds as Integrable Deformations,” Phys. Rev. D 98 no. 2, (2018) 021902, arXiv:1804.01998 [hep-th].
  11. A. Sfondrini and S. J. van Tongeren, “T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG deformations as T⁢s⁢T𝑇𝑠𝑇TsTitalic_T italic_s italic_T transformations,” Phys. Rev. D 101 no. 6, (2020) 066022, arXiv:1908.09299 [hep-th].
  12. L. McGough, M. Mezei, and H. Verlinde, “Moving the CFT into the bulk with T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG,” JHEP 04 (2018) 010, arXiv:1611.03470 [hep-th].
  13. M. Guica and R. Monten, “T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG and the mirage of a bulk cutoff,” SciPost Phys. 10 no. 2, (2021) 024, arXiv:1906.11251 [hep-th].
  14. P. Kraus, J. Liu, and D. Marolf, “Cutoff AdS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT versus the T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformation,” JHEP 07 (2018) 027, arXiv:1801.02714 [hep-th].
  15. T. Hartman, J. Kruthoff, E. Shaghoulian, and A. Tajdini, “Holography at finite cutoff with a T2superscript𝑇2T^{2}italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT deformation,” JHEP 03 (2019) 004, arXiv:1807.11401 [hep-th].
  16. M. Taylor, “TT deformations in general dimensions,” arXiv:1805.10287 [hep-th].
  17. P. Caputa, S. Datta, and V. Shyam, “Sphere partition functions \& cut-off AdS,” JHEP 05 (2019) 112, arXiv:1902.10893 [hep-th].
  18. P. Caputa, P. Caputa, S. Datta, S. Datta, Y. Jiang, Y. Jiang, P. Kraus, and P. Kraus, “Geometrizing T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG,” JHEP 03 (2021) 140, arXiv:2011.04664 [hep-th]. [Erratum: JHEP 09, 110 (2022)].
  19. V. Gorbenko, E. Silverstein, and G. Torroba, “dS/dS and T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG,” JHEP 03 (2019) 085, arXiv:1811.07965 [hep-th].
  20. A. Lewkowycz, J. Liu, E. Silverstein, and G. Torroba, “T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG and EE, with implications for (A)dS subregion encodings,” JHEP 04 (2020) 152, arXiv:1909.13808 [hep-th].
  21. D. J. Gross, J. Kruthoff, A. Rolph, and E. Shaghoulian, “T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG in AdS22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT and Quantum Mechanics,” Phys. Rev. D 101 no. 2, (2020) 026011, arXiv:1907.04873 [hep-th].
  22. D. J. Gross, J. Kruthoff, A. Rolph, and E. Shaghoulian, “Hamiltonian deformations in quantum mechanics, T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG, and the SYK model,” Phys. Rev. D 102 no. 4, (2020) 046019, arXiv:1912.06132 [hep-th].
  23. A. Giveon, N. Itzhaki, and D. Kutasov, “T⁢T¯T¯T\mathrm{T}\overline{\mathrm{T}}roman_T over¯ start_ARG roman_T end_ARG and LST,” JHEP 07 (2017) 122, arXiv:1701.05576 [hep-th].
  24. S. Chakraborty, A. Giveon, and D. Kutasov, “T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG, black holes and negative strings,” JHEP 09 (2020) 057, arXiv:2006.13249 [hep-th].
  25. S. Chakraborty, A. Giveon, and D. Kutasov, “Strings in irrelevant deformations of AdS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT/CFT22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT,” JHEP 11 (2020) 057, arXiv:2009.03929 [hep-th].
  26. A. Giveon, N. Itzhaki, and D. Kutasov, “A solvable irrelevant deformation of AdS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT/CFT22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT,” JHEP 12 (2017) 155, arXiv:1707.05800 [hep-th].
  27. L. Apolo and W. Song, “Strings on warped AdS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT via T⁢J¯T¯J\mathrm{T}\bar{\mathrm{J}}roman_T over¯ start_ARG roman_J end_ARG deformations,” JHEP 10 (2018) 165, arXiv:1806.10127 [hep-th].
  28. L. Apolo, S. Detournay, and W. Song, “TsT, T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG and black strings,” JHEP 06 (2020) 109, arXiv:1911.12359 [hep-th].
  29. L. Apolo and W. Song, “TsT, black holes, and T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG + J⁢T¯𝐽¯𝑇J\overline{T}italic_J over¯ start_ARG italic_T end_ARG + T⁢J¯𝑇¯𝐽T\overline{J}italic_T over¯ start_ARG italic_J end_ARG,” JHEP 04 (2022) 177, arXiv:2111.02243 [hep-th].
  30. L. Apolo, P.-X. Hao, W.-X. Lai, and W. Song, “Glue-on AdS holography for T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG-deformed CFTs,” arXiv:2303.04836 [hep-th].
  31. Y. Li and Y. Zhou, “Cutoff AdS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT versus T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG CFT22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT in the large central charge sector: correlators of energy-momentum tensor,” JHEP 12 (2020) 168, arXiv:2005.01693 [hep-th].
  32. S. Hirano and M. Shigemori, “Random boundary geometry and gravity dual of T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformation,” JHEP 11 (2020) 108, arXiv:2003.06300 [hep-th].
  33. B. Pozsgay, Y. Jiang, and G. Takács, “T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG-deformation and long range spin chains,” JHEP 03 (2020) 092, arXiv:1911.11118 [hep-th].
  34. E. Marchetto, A. Sfondrini, and Z. Yang, “T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG Deformations and Integrable Spin Chains,” Phys. Rev. Lett. 124 no. 10, (2020) 100601, arXiv:1911.12315 [hep-th].
  35. F. Aramini, N. Brizio, S. Negro, and R. Tateo, “Deforming the ODE/IM correspondence with T⁢T¯T¯T\textrm{T}\overline{\textrm{T}}T over¯ start_ARG T end_ARG,” JHEP 03 (2023) 084, arXiv:2212.13957 [hep-th].
  36. P. Ceschin, R. Conti, and R. Tateo, “T⁢T¯T¯T\mathrm{T}\overline{\mathrm{T}}roman_T over¯ start_ARG roman_T end_ARG-deformed nonlinear Schrödinger,” JHEP 04 (2021) 121, arXiv:2012.12760 [hep-th].
  37. R. Conti, S. Negro, and R. Tateo, “Conserved currents and T⁢T¯sTsubscript¯T𝑠\text{T}\bar{\text{T}}_{s}T over¯ start_ARG T end_ARG start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT irrelevant deformations of 2D integrable field theories,” JHEP 11 (2019) 120, arXiv:1904.09141 [hep-th].
  38. R. Conti, S. Negro, and R. Tateo, “The T⁢T¯T¯T\mathrm{T}\overline{\mathrm{T}}roman_T over¯ start_ARG roman_T end_ARG perturbation and its geometric interpretation,” JHEP 02 (2019) 085, arXiv:1809.09593 [hep-th].
  39. Y. Jiang, “T⁢T¯T¯T\mathrm{T}\overline{\mathrm{T}}roman_T over¯ start_ARG roman_T end_ARG-deformed 1d Bose gas,” SciPost Phys. 12 no. 6, (2022) 191, arXiv:2011.00637 [hep-th].
  40. D. Hansen, Y. Jiang, and J. Xu, “Geometrizing non-relativistic bilinear deformations,” JHEP 04 (2021) 186, arXiv:2012.12290 [hep-th].
  41. B. Doyon, J. Durnin, and T. Yoshimura, “The Space of Integrable Systems from Generalised T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG-Deformations,” SciPost Phys. 13 no. 3, (2022) 072, arXiv:2105.03326 [hep-th].
  42. J. Cardy and B. Doyon, “T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformations and the width of fundamental particles,” JHEP 04 (2022) 136, arXiv:2010.15733 [hep-th].
  43. M. Medenjak, G. Policastro, and T. Yoshimura, “Thermal transport in T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG-deformed conformal field theories: From integrability to holography,” Phys. Rev. D 103 no. 6, (2021) 066012, arXiv:2010.15813 [cond-mat.stat-mech].
  44. M. Medenjak, G. Policastro, and T. Yoshimura, “T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG-Deformed Conformal Field Theories out of Equilibrium,” Phys. Rev. Lett. 126 no. 12, (2021) 121601, arXiv:2011.05827 [cond-mat.stat-mech].
  45. C. Ahn and A. LeClair, “On the classification of UV completions of integrable T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformations of CFT,” JHEP 08 (2022) 179, arXiv:2205.10905 [hep-th].
  46. A. LeClair, “deformation of the Ising model and its ultraviolet completion,” J. Stat. Mech. 2111 (2021) 113104, arXiv:2107.02230 [hep-th].
  47. S. Datta and Y. Jiang, “T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG deformed partition functions,” JHEP 08 (2018) 106, arXiv:1806.07426 [hep-th].
  48. O. Aharony, S. Datta, A. Giveon, Y. Jiang, and D. Kutasov, “Modular invariance and uniqueness of T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG deformed CFT,” JHEP 01 (2019) 086, arXiv:1808.02492 [hep-th].
  49. O. Aharony, S. Datta, A. Giveon, Y. Jiang, and D. Kutasov, “Modular covariance and uniqueness of J⁢T¯𝐽¯𝑇J\bar{T}italic_J over¯ start_ARG italic_T end_ARG deformed CFTs,” JHEP 01 (2019) 085, arXiv:1808.08978 [hep-th].
  50. O. Aharony and T. Vaknin, “The TT* deformation at large central charge,” JHEP 05 (2018) 166, arXiv:1803.00100 [hep-th].
  51. S. He, J.-R. Sun, and Y. Sun, “The correlation function of (1,1) and (2,2) supersymmetric theories with T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG deformation,” JHEP 04 (2020) 100, arXiv:1912.11461 [hep-th].
  52. S. He and Y. Sun, “Correlation functions of CFTs on a torus with a T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformation,” Phys. Rev. D 102 no. 2, (2020) 026023, arXiv:2004.07486 [hep-th].
  53. S. He, “Note on higher-point correlation functions of the T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG or J⁢T¯𝐽¯𝑇J\bar{T}italic_J over¯ start_ARG italic_T end_ARG deformed CFTs,” Sci. China Phys. Mech. Astron. 64 no. 9, (2021) 291011, arXiv:2012.06202 [hep-th].
  54. S. Hirano, T. Nakajima, and M. Shigemori, “T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG Deformation of stress-tensor correlators from random geometry,” JHEP 04 (2021) 270, arXiv:2012.03972 [hep-th].
  55. S. He, Y. Li, Y.-Z. Li, and Y. Zhang, “Holographic torus correlators of stress tensor in A⁢d⁢S3/C⁢F⁢T2𝐴𝑑subscript𝑆3𝐶𝐹subscript𝑇2AdS_{3}/CFT_{2}italic_A italic_d italic_S start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT / italic_C italic_F italic_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT,” arXiv:2303.13280 [hep-th].
  56. J. Cardy, “T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG deformation of correlation functions,” JHEP 12 (2019) 160, arXiv:1907.03394 [hep-th].
  57. M. Guica, “A definition of primary operators in J⁢T¯𝐽¯𝑇J\bar{T}italic_J over¯ start_ARG italic_T end_ARG-deformed CFTs,” SciPost Phys. 13 no. 3, (2022) 045, arXiv:2112.14736 [hep-th].
  58. W. Cui, H. Shu, W. Song, and J. Wang, “Correlation Functions in the TsT/T⁢T¯𝑇¯𝑇T{\bar{T}}italic_T over¯ start_ARG italic_T end_ARG Correspondence,” arXiv:2304.04684 [hep-th].
  59. O. Aharony and N. Barel, “Correlation Functions in T⁢T¯T¯T\textrm{T}\bar{\textrm{T}}T over¯ start_ARG T end_ARG-deformed Conformal Field Theories,” arXiv:2304.14091 [hep-th].
  60. M. Karowski and P. Weisz, “Exact Form-Factors in (1+1)-Dimensional Field Theoretic Models with Soliton Behavior,” Nucl. Phys. B 139 (1978) 455–476.
  61. 1992.
  62. G. Delfino, “Integrable field theory and critical phenomena: The Ising model in a magnetic field,” J. Phys. A 37 (2004) R45, arXiv:hep-th/0312119.
  63. O. A. Castro-Alvaredo, S. Negro, and F. Sailis, “Completing the Bootstrap Program for T⁢T¯T¯T\mathrm{T}\bar{\mathrm{T}}roman_T over¯ start_ARG roman_T end_ARG-Deformed Massive Integrable Quantum Field Theories,” arXiv:2305.17068 [hep-th].
  64. O. A. Castro-Alvaredo, S. Negro, and F. Sailis, “Form Factors and Correlation Functions of T⁢T¯T¯T\mathrm{T}\overline{\mathrm{T}}roman_T over¯ start_ARG roman_T end_ARG-Deformed Integrable Quantum Field Theories,” arXiv:2306.01640 [hep-th].
  65. O. A. Castro-Alvaredo, S. Negro, and I. M. Szécsényi, “On the Representation of Minimal Form Factors in Integrable Quantum Field Theory,” arXiv:2311.16955 [hep-th].
  66. W. Donnelly and V. Shyam, “Entanglement entropy and T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformation,” Phys. Rev. Lett. 121 no. 13, (2018) 131602, arXiv:1806.07444 [hep-th].
  67. A. Banerjee, A. Bhattacharyya, and S. Chakraborty, “Entanglement Entropy for T⁢T𝑇𝑇TTitalic_T italic_T deformed CFT in general dimensions,” Nucl. Phys. B 948 (2019) 114775, arXiv:1904.00716 [hep-th].
  68. S. Grieninger, “Entanglement entropy and T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG deformations beyond antipodal points from holography,” JHEP 11 (2019) 171, arXiv:1908.10372 [hep-th].
  69. W. Donnelly, E. LePage, Y.-Y. Li, A. Pereira, and V. Shyam, “Quantum corrections to finite radius holography and holographic entanglement entropy,” JHEP 05 (2020) 006, arXiv:1909.11402 [hep-th].
  70. B. Chen, L. Chen, and P.-X. Hao, “Entanglement entropy in T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG-deformed CFT,” Phys. Rev. D 98 no. 8, (2018) 086025, arXiv:1807.08293 [hep-th].
  71. Y. Sun and J.-R. Sun, “Note on the Rényi entropy of 2D perturbed fermions,” Phys. Rev. D 99 no. 10, (2019) 106008, arXiv:1901.08796 [hep-th].
  72. H.-S. Jeong, K.-Y. Kim, and M. Nishida, “Entanglement and Rényi entropy of multiple intervals in T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG-deformed CFT and holography,” Phys. Rev. D 100 no. 10, (2019) 106015, arXiv:1906.03894 [hep-th].
  73. S. He and H. Shu, “Correlation functions, entanglement and chaos in the T⁢T¯/J⁢T¯𝑇¯𝑇𝐽¯𝑇T\overline{T}/J\overline{T}italic_T over¯ start_ARG italic_T end_ARG / italic_J over¯ start_ARG italic_T end_ARG-deformed CFTs,” JHEP 02 (2020) 088, arXiv:1907.12603 [hep-th].
  74. S. Chakraborty, A. Giveon, N. Itzhaki, and D. Kutasov, “Entanglement beyond AdS,” Nucl. Phys. B 935 (2018) 290–309, arXiv:1805.06286 [hep-th].
  75. S. Chakraborty and A. Hashimoto, “Entanglement entropy for T⁢T¯T¯T\mathrm{T}\overline{\mathrm{T}}roman_T over¯ start_ARG roman_T end_ARG, J⁢T¯J¯T\mathrm{J}\overline{\mathrm{T}}roman_J over¯ start_ARG roman_T end_ARG, T⁢J¯T¯J\mathrm{T}\overline{\mathrm{J}}roman_T over¯ start_ARG roman_J end_ARG deformed holographic CFT,” JHEP 02 (2021) 096, arXiv:2010.15759 [hep-th].
  76. M. Asrat and J. Kudler-Flam, “T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG, the entanglement wedge cross section, and the breakdown of the split property,” Phys. Rev. D 102 no. 4, (2020) 045009, arXiv:2005.08972 [hep-th].
  77. H.-S. Jeong, W.-B. Pan, Y.-W. Sun, and Y.-T. Wang, “Holographic study of T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG like deformed HV QFTs: holographic entanglement entropy,” JHEP 02 (2023) 018, arXiv:2211.00518 [hep-th].
  78. K. Allameh, A. F. Astaneh, and A. Hassanzadeh, “Aspects of holographic entanglement entropy for T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG-deformed CFTs,” Phys. Lett. B 826 (2022) 136914, arXiv:2111.11338 [hep-th].
  79. M. He and Y. Sun, “Holographic entanglement entropy in T⁢T¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG-deformed AdS3,” Nucl. Phys. B 990 (2023) 116190, arXiv:2301.04435 [hep-th].
  80. J. Tian, “On-shell action and Entanglement entropy of T⁢T¯T¯T\text{T}\bar{\text{T}}T over¯ start_ARG T end_ARG-deformed Holographic CFTs,” arXiv:2306.01258 [hep-th].
  81. J. L. Cardy, O. A. Castro-Alvaredo, and B. Doyon, “Form factors of branch-point twist fields in quantum integrable models and entanglement entropy,” J. Statist. Phys. 130 (2008) 129–168, arXiv:0706.3384 [hep-th].
  82. H. M. Babujian, A. Fring, M. Karowski, and A. Zapletal, “Exact form-factors in integrable quantum field theories: The Sine-Gordon model,” Nucl. Phys. B 538 (1999) 535–586, arXiv:hep-th/9805185.
  83. G. Feverati, F. Ravanini, and G. Takacs, “Truncated conformal space at c = 1, nonlinear integral equation and quantization rules for multi - soliton states,” Phys. Lett. B 430 (1998) 264–273, arXiv:hep-th/9803104.
  84. V. P. Yurov and A. B. Zamolodchikov, “TRUNCATED CONFORMAL SPACE APPROACH TO SCALING LEE-YANG MODEL,” Int. J. Mod. Phys. A 5 (1990) 3221–3246.
  85. V. P. Yurov and A. B. Zamolodchikov, “Correlation functions of integrable 2-D models of relativistic field theory. Ising model,” Int. J. Mod. Phys. A 6 (1991) 3419–3440.
  86. O. A. Castro-Alvaredo and E. Levi, “Higher particle form factors of branch point twist fields in integrable quantum field theories,” J. Phys. A 44 (2011) 255401, arXiv:1103.2069 [hep-th].
  87. G. Delfino, P. Simonetti, and J. L. Cardy, “Asymptotic factorization of form-factors in two-dimensional quantum field theory,” Phys. Lett. B 387 (1996) 327–333, arXiv:hep-th/9607046.
  88. O. A. Castro-Alvaredo, S. Negro, and F. Sailis, “Entanglement entropy from form factors in T⁢T¯T¯T\textrm{T}\overline{\textrm{T}}T over¯ start_ARG T end_ARG-deformed integrable quantum field theories,” JHEP 11 (2023) 129, arXiv:2306.11064 [hep-th].
  89. S. Ashkenazi, S. Chakraborty, Z. Ma, and T. Shachar, “Linear response of entanglement entropy to T⁢T¯𝑇¯𝑇T\overline{T}italic_T over¯ start_ARG italic_T end_ARG in massive QFTs,” JHEP 04 (2023) 077, arXiv:2302.06688 [hep-th].
  90. G. Delfino, G. Mussardo, and P. Simonetti, “Statistical models with a line of defect,” Phys. Lett. B 328 (1994) 123–129, arXiv:hep-th/9403049.
  91. G. Delfino, G. Mussardo, and P. Simonetti, “Scattering theory and correlation functions in statistical models with a line of defect,” Nucl. Phys. B 432 (1994) 518–550, arXiv:hep-th/9409076.
  92. Y. Jiang, “Entanglement entropy in integrable field theories with line defects. Part I. Topological defect,” JHEP 07 (2017) 127, arXiv:1703.03562 [hep-th].
  93. Y. Jiang, “Entanglement Entropy in Integrable Field Theories with Line Defects II. Non-topological Defect,” JHEP 08 (2017) 013, arXiv:1703.04458 [hep-th].
  94. S. Ghoshal and A. B. Zamolodchikov, “Boundary S matrix and boundary state in two-dimensional integrable quantum field theory,” Int. J. Mod. Phys. A 9 (1994) 3841–3886, arXiv:hep-th/9306002. [Erratum: Int.J.Mod.Phys.A 9, 4353 (1994)].
  95. O. A. Castro-Alvaredo and B. Doyon, “Bi-partite entanglement entropy in massive QFT with a boundary: The Ising model,” J. Statist. Phys. 134 (2009) 105–145, arXiv:0810.0219 [hep-th].
  96. Y. Jiang, F. Loebbert, and D.-l. Zhong, “Irrelevant deformations with boundaries and defects,” J. Stat. Mech. 2204 no. 4, (2022) 043102, arXiv:2109.13180 [hep-th].
  97. O. Blondeau-Fournier, O. A. Castro-Alvaredo, and B. Doyon, “Universal scaling of the logarithmic negativity in massive quantum field theory,” J. Phys. A 49 no. 12, (2016) 125401, arXiv:1508.04026 [hep-th].
  98. L. Capizzi, O. A. Castro-Alvaredo, C. De Fazio, M. Mazzoni, and L. Santamaría-Sanz, “Symmetry resolved entanglement of excited states in quantum field theory. Part I. Free theories, twist fields and qubits,” JHEP 12 (2022) 127, arXiv:2203.12556 [hep-th].
  99. L. Capizzi, C. De Fazio, M. Mazzoni, L. Santamaría-Sanz, and O. A. Castro-Alvaredo, “Symmetry resolved entanglement of excited states in quantum field theory. Part II. Numerics, interacting theories and higher dimensions,” JHEP 12 (2022) 128, arXiv:2206.12223 [hep-th].
  100. L. Capizzi, M. Mazzoni, and O. A. Castro-Alvaredo, “Symmetry Resolved Entanglement of Excited States in Quantum Field Theory III: Bosonic and Fermionic Negativity,” arXiv:2302.02666 [hep-th].
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.